
AD-A261 847

20030226116

TECHNICAL REPORT GL-92-20

ABERDEEN AREA FIRE TRAINING AREA HYDROLOGIC ASSESSMENT ABERDEEN PROVING GROUND

by

Charlie B. Whitten, S. Paul Miller, Nancy A. Derryberry Geotechnical Laboratory

and

Roy Wade

Environmental Laboratory

DEPARTMENT OF THE ARMY

Waterways Experiment Station, Corps of Engineers 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

December 1992 Final Report

Approved For Public Release: Distribution Is Unlimited

93-03884

Prepared for Environmental Management Division Directorate of Safety, Health, and Environment Aberdeen Proving Ground, Maryland Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average: hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington, via. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE December 1992	3. REPORT TYPE AN Final report	D DATES COVERED
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Aberdeen Area Fire Training Ar Proving Ground	ea Hydrologic Assessmen	t, Aberdeen	
6. AUTHOR(S)			1
Charlie B. Whitten, S. Paul Mille	er, Nancy A. Derryberry,	Roy Wade	
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
U.S. Army Engineer Waterways Geotechnical and Environmental 3909 Halls Ferry Road, Vicksburg	Laboratories		Technical Report GL-92-20
9. SPONSORING/MONITORING AGENCY Environmental Management Div Directorate of Safety, Health, an Aberdeen Proving Ground, Mary	ision d Environment		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES Available from National Technic	val Information Service 5	285 Port Royal Road	1 Springfield VA 22161
12a. DISTRIBUTION / AVAILABILITY STAT			112b. DISTRIBUTION CODE
Approved for public release; dis	dibution is untillified		
13. ABSTRACT (Maximum 200 words)			
to Aberdeen Proving Ground (A (RCRA) Facility Assessment (R draft RFA report suggested furth the recommendations. Three soi of groundwater sampling and an APG lies in the Coastal Plai major units, the Potomac Group, ceous sediments of the Potomac	PG), Maryland. The perm FA) of sites in the Aberde ler investigations at the Fill borings and twelve groundlyses were conducted, in Physiographic Province the Talbot Formation, an Group lie unconformably	it required a Resource Area (AA) of AP re Training Area (Findwater monitor we which is underlain to d Recent (Holocene on the older Precam	TA). This study is in response to alls were installed. Three rounds by sediments consisting of three sediments. The Lower Creta-
Trenches were ignited after bein			

(Continued)

14.	SUBJECT TERMS Aberdeen Proving Ground	nd, Maryland	Hydro	geology	15. NUMBER OF PAGES 325
	Groundwater Groundwater contaminate	tion	Site ch	aracterization	16. PRICE CODE
17.	SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFIE OF THIS PAGE UNCLASSIFIED	CATION	19. SECURITY CLASSIFICA OF ABSTRACT	TION 20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 -298-102

13. (Concluded).

During the RFA shallow boring soil gas surveys were conducted for volatile organic compound (VOC) contamination at the FTA. Deeper borings were conducted for monitor wells and geologic mapping. Sampling and monitoring of groundwater, surface water, and soils was conducted.

Analyses of groundwater from the monitor wells and two supply wells indicate the AFTA is contributing chemical contaminants to the upper aquifer, which is at a depth of approximately 30 feet below ground surface. VOC's were the only contaminants found in the groundwater that consistently exceeded established maximum contaminant (MCL) levels. Cadmium, lead, and nickel exceeded established MCL values in at least one well in the three sample rounds. Surface water samples from the bermed pits and the separation pond contained cadmium, lead, methylene chloride, and benzene that exceeded MCL guidelines. Chromium, copper, lead, silver, and zinc in the surface water samples exceeded fresh and/or marine water quality criteria. Surface soil samples show guidelines were exceeded at one or more training areas. These guidelines were exceeded by cadmium, lead, zinc, mercury, silver, DDT, PCB-1248, and tetrachloroethane.

Report recommendations include:

- a. Soil sampling to define the horizontal and vertical extent of soil contamination.
- b. Monitor wells should be installed to define the horizontal and vertical extent of groundwater contamination.
- c. Monitor wells should be installed between the AFTA and municipal water wells to determine the chemical characteristics of the groundwater.
- d. Quarterly monitoring of water levels in the wells should be conducted to determine any seasonal changes and groundwater gradients.
- e. Monitor wells should be analyzed for compounds on the Target Compound List and the Target Analyte List.
- f. Monitor wells should be analyzed for water quality parameters, oil and grease, and total recoverable hydrocarbons.

Regulations, permissible contaminant levels, toxic and acute exposure limits, and other aspects cited in this report represent those pending at the time of the study. Those same limits and levels may not be current or accurate at the time of report publication.

PREFACE

This study was performed during the period September 1989 to July 1991 by the U.S. Army Engineer Waterways Experiment Station (WES) for the Environmental Management Division, Directorate of Safety, Health, and Environment, Aberdeen Proving Ground (APG), Aberdeen, Maryland. The work was performed under the authority provided by Project Order Number 08-88 (dated 22 September 1988) with Amendments 1 and 2 and MIPR's 03-90 (dated 13 November 1989) and 14-91 (dated 4 December 1990). The investigation reported herein was completed in 1990 and this report, in draft form, was reviewed by the Aberdeen Proving Ground and the Environmental Protection Agency, Region III. Subsequent and ongoing field investigations have, and will provide, additional data about the Aberdeen Area (AA) Fire Training Area and will influence findings presented in this report. Subsequent studies include an August 1991 groundwater sampling round and current (1992) field investigations in the Fire Training Area and nearby western Aberdeen Area-APG (AA-PG) boundary. Despite the subsequent studies, both the sponsor and WES agreed it was desirable to publish this intrim report to preserve the technical data contained herein and funds were provided by the sponsor for that purpose in the fall 1992.

The assessment was performed by Charlie B. Whitten, S. Paul Miller, and Nancy A. Derryberry, Engineering Geology Branch (EGB), Earthquake Engineering and Geosciences Division (EEGD), Geotechnical Laboratory (GL), WES. Paul M. Lucas, EGB, was the field geologist. A data base for the analytical data was developed by Benita Allen, Rock Mechanics Branch, Soil and Rock Mechanics Division, GL. Drilling crews were under the supervision of Mark A. Vispi, Chief, In Situ Evaluation Branch, EEGD. Sampling was performed by Roy Wade and Buddy Ragsdale, EL, WES. Analysis of the samples was performed by the U.S. Army Engineer Division, Southwest. The report was written by Charlie B. Whitten, S. Paul Miller, and Nancy A. Derryberry, EGB, EEGD, GL and Roy Wade, Environmental Engineering Division, EL. Direct supervision was provided by Joe L. Gatz and Robert J. Larson, Chief and Acting Chief, respectively, EGB. The project was conducted under the general supervision of Dr. A.G. Franklin, Chief, EEGD, and Dr. W.F. Marcuson III, Chief, GL.

At the time of publication of this report, the Director of WES was Dr. Robert W. Whalin and the Commander was COL Leonard G. Hassell, EN.

EXECUTIVE SUMMARY

Introduction

In 1986 the U.S. Environmental Protection Agency (EPA) issued a Hazardous Waste Management Permit (MD3-21002 1355) to Aberdeen Proving Ground (APG). This permit required a Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA) of sites in the Aberdeen Area (AA) of APG. The RFA was completed and a draft report, which included the Aberdeen Area Fire Training Area (AFTA) (Derryberry, et al October 1990), was submitted to EPA by APG. The report recommended further investigation of the AFTA. This study was conducted as a result of the RFA recommendation. The study included three soil borings, the installation of twelve groundwater monitor wells, three rounds of groundwater sampling and analyses of chemical and groundwater flow data. The investigation reported herein was completed in 1990 and this report, in draft form, was reviewed by the APG and the EPA, Region III. Subsequent and ongoing field investigations have, and will provide, additional data about the AFTA and will influence conclusions presented in this report. Subsequent studies include an August, 1991 groundwater sampling round and current (1992) field investigations in the AFTA and nearby western AA-APG boundary. When reports on these studies become available, they should be consulted in order to obtain the most accurate understanding of the conditions existing at the AFTA.

Study Area Location

APG, located on the northeastern shore of Chesapeake Bay, is approximately 15 miles northeast of Baltimore, Maryland. APG occupies 38,400 acres (approximately 60 sq miles¹) of Harford County and is divided into the Edgewood Area (EA-APG) and Aberdeen Area (AA-APG). The AFTA is near Phillips Army Airfield in the AA-APG.

Regional Setting and Geology

APG is in the Coastal Plain Physiographic Province. This province is generally characterized by low lying, gently rolling terrain. Some areas surrounding Chesapeake Bay are nearly level while

¹A table of factors for converting non-SI units of measurement to SI (metric) is presented on page 11.

others have been dissected, making the local terrain rolling to moderately hilly.

APG is on the Chesapeake Bay in the northwestern part of Harford County. Due to the proximity of two large bodies of water, the Chesapeake Bay and Atlantic Ocean, the climate tends to be moderate as compared to inland areas. AA-APG is bounded by water on 3 sides, the Chesapeake Bay to the east, Swan Creek to the northeast, and the Bush River to the west and south. The Bush River enters the Chesapeake Bay at the southern tip of AA-APG. AA-APG is drained by eight rivers and streams. Surface waters on AA-APG tend to be shallow and sluggish with tidal estuaries at the mouths of the streams and rivers. Several of the streams on AA-APG are broad swampy areas rather than narrow well defined channels.

Coastal Plain sediments in Harford County consist of three major units, the Potomac Group, the Talbot Formation and Recent (Holocene) sediments. The Lower Cretaceous sediments of the Potomac Group, which is comprised of the Paruxent, Arundel and Patapsco formations in Harford County, unconformably overlie the Precambrian basement rock.

History of the AFTA

The AFTA was a housing area for troops during World War II. The buildings were removed in the late 1950's or early 1960's. Partial building foundations are still in the area. Fire training exercises started at this site in the early 1960's with exercises 3 to 4 times a year. The number of exercises increased to an average of once a week. Exercises consisted of filling training pits with water and fuel, then igniting the pit for the trainees to extinguish. The training pits were made by building a 25 to 30 foot diameter, circular soil berm 1 to 2 foot high, on the ground surface. Fire training exercises at the AFTA were stopped in March 1989.

Assessment

During the RFA, a soil gas survey by the Baltimore District Corps of Engineers was used to help define the extent of volatile organic compound (VOC) contamination at the AFTA. Deep soil borings and borings for monitor wells drilled by the WES in 1989 for this study were used to define the site geology. Water level data from the groundwater monitor wells installed by WES in 1989 were used to define shallow aquifer gradients. Sampling and analysis of groundwater, surface water and soils determined the groundwater and soil contaminants at the AFTA. Regulations, permissible contaminant levels, toxic and acute exposure limits and other aspects cited in this report represent

those pending at the time of the study. Those same limits and levels may not be current or accurate at the time of report publication.

Findings

The water table aquifer at the AFTA is the Talbot Formation. Underlying the sands and gravels of the Talbot Formation are the clays of the Arundel Formation. Groundwater flow in the water table aquifer is to the south year round.

Analyses of groundwater from the eleven monitor wells and two supply wells (wells 1040 and 1041) indicate the AFTA is contributing chemical contaminants to the upper aquifer, which is at a depth of approximately 30 feet below ground surface. VOCs were the only contaminants found in the groundwater that consistently exceeded established maximum contaminant levels (MCLs). VOCs exceeding an established MCL include tetrachloroethane, trichloroethane, 1,1-dichloroethene, and 1,1-dichloroethane. Cadmium, lead and nickel exceeded established MCL values in at least 1 well in the 3 sample rounds. Cadmium was detected in only one sample from a monitor well up-gradient of the AFTA. Lead was detected in 2 monitor wells, 1 time in each well, and twice in standby supply well 1041, which is located cross-gradient from the AFTA. Nickel exceeded the MCL value 1 time but was commonly found in most wells at the AFTA. Iron and manganese exceeded Secondary MCL values.

Surface water samples from the bermed pits and the separation pond contained cadmium, lead, methylene chloride, and benzene that exceeded MCL guidelines. The surface water samples also contained chromium, copper, lead, silver and zinc that exceeded the fresh and/or marine water quality criteria.

Surface soil samples show the following parameters exceeded guidelines at one or more of the training areas at the AFTA:

Cadmium Silver
Lead DDT
Zinc PCB-1248

Mercury Tetrachloroethane.

VOCs, pesticides, and fuels at levels below guidelines were detected.

Recommendations

Soil sampling to define the horizontal and vertical extent of soil contamination at the AFTA should be conducted.

Install monitor wells to define the horizontal and vertical extent of the groundwater contamination from the AFTA.

Monitor wells should be installed between the AFTA and the Harford County production wells along the western AA-APG boundary so chemical characteristics of the groundwater between the AFTA and Harford County wells can be monitored.

Water levels in the monitor wells at the AFTA and any adjacent areas should be measured quarterly to monitor seasonal changes in groundwater gradients.

The AFTA monitor wells, to include wells 1040 and 1041, and the monitor wells between the Harford county production wells and the AFTA should be sampled and analyses conducted for:

- Target Compound List (TCL)
- Target Analyte List (TAL)
- general water quality parameters
- oil and grease
- total recoverable hydrocarbons

Three quarterly rounds of chemical data should be collected.

CONTENTS

PREFACE.		1
EXECUTIV	'E SUMMARY	2
CONTENTS	S	6
	of Figures	8 10
CONVERSI	ON FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT	1 1
PART I:	INTRODUCTION	12
Scop	kground	12 12 12
PART II:	HISTORY OF USE	16
PART III:	REGIONAL SETTING AND GEOLOGY	18
	ional Setting	18 18
PART IV:	SITE SETTING AND GEOLOGY	25
Site	Setting	25 25 43
PART V:	HYDROGEOLOGY	45
	ifer Structures and Properties	45 46
PART VI:	SAMPLING AND ANALYSIS	65
Grou Surfa Surfa Equij Samp Samp Field	rview Indwater Sampling Index Sampling Index Soil Sampling Index S	65 68 68 69 69 69
Chair	n of Custody	70

PART VII: ANALYSIS OF CHEMICAL DATA	71
Surface water Samples Soil Gas Survey. Soil Samples Underground Storage Tank Groundwater Samples Summary of Chemical Data	71 77 81 92 92 105
PART VIII: FINDINGS AND RECOMMENDATIONS	107
Conclusions	107 108
REFERENCES	109
APPENDIX A: AERIAL PHOTOGRAPHS OF THE AFTA	A-1
APPENDIX B: PHOTOS OF TRAINING AREAS AT THE AFTA	B-1
APPENDIX C: AFTA BORING LOGS	C-1
APPENDIX D: GRAIN SIZE ANALYSES FOR SOIL BORINGS FTA-B1 THROUGH FTA-B3	D-1
APPENDIX E: WELL CONSTRUCTION DIAGRAMS	E-1
APPENDIX F: SURVEY DATA	F-1
APPENDIX G: WATER LEVEL DATA FOR AFTA WELLS	G-1
APPENDIX H: WATER LEVEL DATA FOR WELLS AA-1 THROUGH AA-5	H-1
APPENDIX I: SURFACE WATER CHEMICAL DATA	I-1
APPENDIX J: SOIL GAS REPORT	J-1
APPENDIX K: SOIL CHEMICAL DATA	K-1
APPENDIX L: UNDERGROUND STORAGE TANK CHEMICAL DATA	L-1
APPENDIX M: GROUNDWATER CHEM!CAL DATA FOR SAMPLE ROUND 1 .	M-1
APPENDIX N: GROUNDWATER CHEMICAL DATA FOR SAMPLE ROUND 2 .	N-1
APPENDIX O: GROUNDWATER CHEMICAL DATA FOR SAMPLE ROUND 3.	0-1

List of Figures

<u>No.</u>		Page
1	Location of Aberdeen Proving Ground, Maryland	13
2	Location of AFTA on Aberdeen Area Aberdeen Proving Ground	14
3	Training areas at the AFTA	15
4	Physiographic Provinces in Maryland	19
5	Generalized cross-section of the Coastal Plain sediments	20
6	Monthly precipation at Phillips Army Airfield from 1969	
	thru 1990	26
7	Average monthly precipitation at from 1969 thru 1990	27
8	Location of borings and other wells in the vicinity of the AFTA	28
9	AFTA site map showing the location of borings and monitor wells	35
10	Location of cross-sections A-A' thru E-E' at the AFTA	37
11	Cross-section A-A' at the AFTA	38
12	Cross-section B-B' at the AFTA	39
13	Cross-section C-C' at the AFTA	40
14	Cross-section D-D' at the AFTA	41
15	Cross-section E-E' at the AFTA	42
16	Water level contour map (July 1984) of the shallow aquifer along the	
	northwest boundary of AA-APG	4.7
17	Water level contour map (February 1985) of the shallow aquifer	
	along the northwest boundary of AA-APG	49
18	Water level data for wells AA-1 thru AA-5	50
19	Water level contour maps using data from wells AA-1 thru AA-5	52
20	Average daily pumpage for the Aberdeen City production wells	53
21	Water level compur maps (January and March 1990) of the northern area	
	of AA-APG	54
22	Average daily pumpage for the Harford County production wells	56
23	Water level data for the AFTA monitor wells	57
24	Water level contour map (12 December 1989) at the AFTA	58
25	Water level contour map (12 January 1990) at the AFTA	59
26	Water level contour map (28 February 1990) at the AFTA	60
27	Water level contour map (26 March 1990) at the AFTA	61
28	Water level contour map (30 May 1990) at the AFTA	62
29	Water level contour map (28 June 1990) at the AFTA	63
30	Water level contour map (31 October 1990) at the AFTA	64
31	AFTA site map	73
32	Surface-water sample location in Berm 2	74
33	Surface-water sample locations in Berm 3, its drainage path	
	the separation pond, and the outfall area	75
34	Grid for the soil gas survey	78
35	Total benzene, toluene and o-xylene (BTX) in mg/L passing the detector	79
36	Total ionizables in mg/L passing the detector	80
37	Soil sample locations in Berm 1	85
38	Soil sample locations in Bean 2 and its drainage path	87

List of Figures (cont.)

39	Soil sample locations in Berm 3, its drainage path, the separation	
	pond, and the outfall area	88
40	Soil sample locations at the Old Smoke House	90
41	Soil sample locations at the Fire Extinguisher area	91
42	Location of groundwater wells used for background water	
	quality (Nutter and Smigaj, 1975)	101

List of Tables

No.		Page
1	Generalized lithology of the Coastal Plain sediments	21
2	Depth to bedrock in the northern portion of AA-APG	29
3	Lithologies for City of Aberdeen Test Wells at Sites 1 thru 6	31
4	Depth and elevation of the 2 lithofacies of the Talbot Formation on AA-APG	32
5	Data for wells FTA-M1 thru FTA-M12 and soil borings FTA-B1 thru FTA-B3	36
6	Results of aquifer tests in the Talbot Formation	. 47
7	Parameters detected in the surface water samples at AFTA	72
8	Parameters detected in soil samples at the AFTA	82
9	Parameters detected in UST at the AFTA	93
10	Parameters above the detection limit in groundwater samples at the AFTA	
	in Sample Rounds 1 (February 1990), 2 (May 1990) and 3 (July 1990)	94
11	Background levels for commonly reported parameters in the Talbot Formation	99
12	Range of parameters in background and AFTA wells	100
13	The range of values for the groundwater parameters above the detection	
	limit at the AFTA	103

Conversion Factors, Non-SI to SI (Metric) Units of Measurement

Non-SI units of measurements used in this report can be converted to SI (metric) units as follows:

Multiply	by	To Obtain
acres	4,046.873	square metres
feet	0.3048	metres
feet per mile	0.1893935	metres per kilometre
°Fahrenheit minus 32	0.555556	°Celcius
gallons	3.7853	litres
miles (US statute)	1.609347	kilometres

PART I: INTRODUCTION

Background

In 1986, the U.S Environmental Protection Agency (EPA) issued a Hazardous Waste Management Permit (MD3 21002 1355) to Aberdeen Proving Ground (APG), Maryland. As required by the permit, APG submitted a scope of work to EPA, Region III on October 6, 1987. This study is follow on work to define hydrogeology and extent of contamination at the Aberdeen Fire Training Area (AFTA), Aberdeen Area-Aberdeen Proving Ground (AA-APG), Maryland.

Scope

The objective of this study is to provide a framework for characterization of any contaminant plume that may exist or other release at the AFTA.

Study Area Location

The AFTA is located within the restricted area of AA-APG (Figure 1). The site, which covers approximately 2 acres, is just north and across Bush River Road from Phillips Army Airfield (Figure 2 and Appendix A). The AFTA is inside the fenced 44 acre site leased to the State of Maryland for a fire training facility (Figure 3).

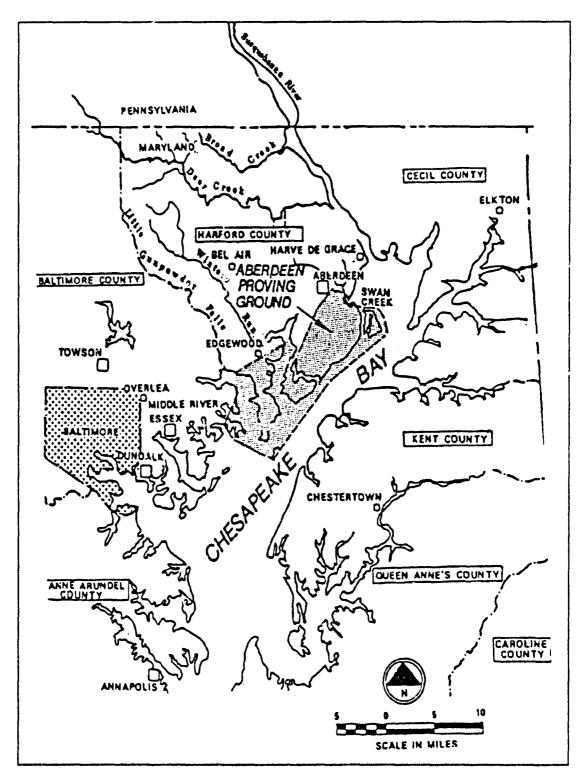


Figure 1. Location of Aberdeen Proving Ground, Maryland.

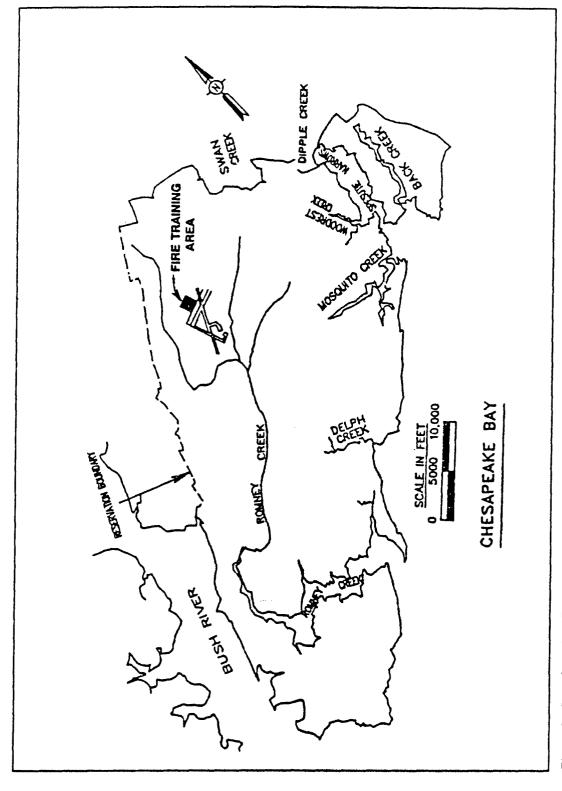


Figure 2. Location of AFTA on Aberdeen Proving Ground, Maryland.

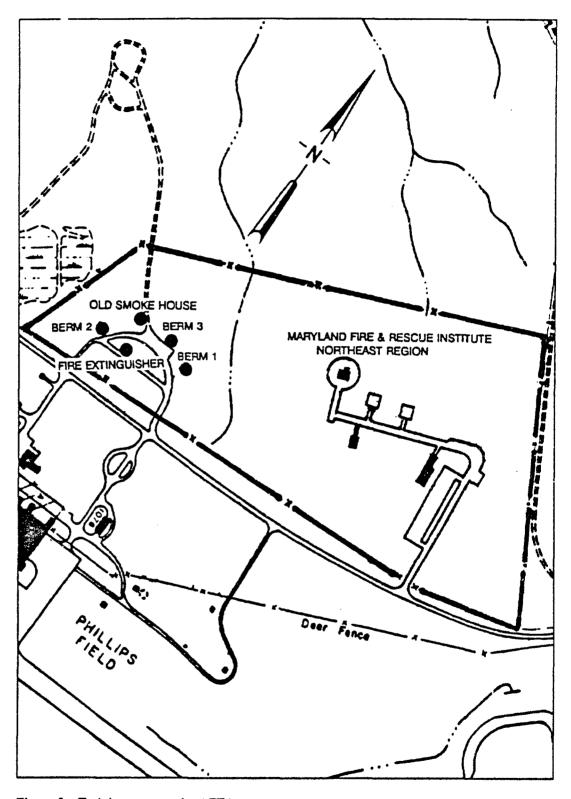


Figure 3. Training areas at the AFTA.

PART II: HISTORY OF USE

The AFTA was a housing area for troops during World War II. The buildings were removed in the late 1950's or early 1960's. Partial building foundations remain in the area.

Fire training exercises started at this site in the early 1960's with exercises 3 to 4 times a year. The number of exercises increased to an average of once a week. Exercises consisted of filling the training pits with water and fuel, then igniting the pit for the trainees to extinguish. After an exercise, any remaining fuel was allowed to burn off. Approximately 1500 gallons of fuel were burned for one day of training (Derryberry, et al, 1990). On December 1, 1988, a Memorandum for Record from the Environmental Management Division was sent to the Fire Chief stating that there were to be no more releases to the environment due to fire training practices. As of March 1989, training practices were stopped until further notice (Derryberry, et al, 1990).

Training areas (Figure 3 and Appendix B) within the AFTA include:

- Berm 1 which contains an old jet aircraft (F-89 Scorpion);
- Berm 2 which contains a broken flange set-up for simulating fire on a loading dock;
- Berm 3 which contains an old military tank;
- Old Smoke House:
- Fire Extinguisher Area.

Fires of oil and old tires were used in the past to generate smoke for training in the Old Smoke House. The Old Smoke House has not been used in the last 18 years since Chief Jones has been with the Fire Department. Recently a trailer, set up with a special non-toxic smoke generator, has been used for training purposes (Derryberry, et al, 1990).

North of the Old Smoke House, toward the back of the area, several old aircraft and parts of aircraft have been abandoned. Historical aerial photographs show this area had been used as a storage area for old aircraft since the 1940's.

A 3000 gallon underground storage tank (UST) was located approximately 50 feet south of the Old Smoke House. The UST was removed in 1990. Fuels reportedly stored in the UST included diesel tuel, gasoline, kerosene, and jet engine fuels (JP4 and JP5). The fuels, which did not meet standards for use in vehicles due to moisture content or other reasons, were placed in the UST for use in fire training activities.

Forty-four acres surrounding the AFTA has been leased by the State of Maryland for a Fire Training Center. A permitted fire training facility has been built. The AFTA is in the southwest corner of the 44 acre site.

PART III: REGIONAL SETTING AND GEOLOGY

Regional Setting

Maryland extends across five physiographic provinces, the Appalachian Plateau, Valley and Ridge, Blue Ridge, Piedmont Plateau, and Coastal Plain provinces (Figure 4). These provinces parallel the Atlantic shore in belts of varying width from New England almost to the Gulf of Mexico (Vokes, 1957).

APG is in the Coastal Plain Physiographic Province, which is generally characterized by a low lying, gently rolling terrain (Figure 4). Some areas surrounding Chesapeake Bay are nearly level while others have been dissected, making the local terrain rolling to moderately hilly (Dames and Moore, 1972).

Regional Geology

Coastal Plain sediments are marine and non-marine sediments that were deposited on the eastern continuation of the Piedmont Crystalline Complex. The transgressive and regressive seas and local streams deposited layers of clay, silt, sand and gravel. These interbedded layers form a wedge that begins at the Fall Line and thickens to the southeast (Figure 5). The Fall Line is the boundary between the metamorphic rocks of the Piedmont Plateau and the sedimentary units of the Atlantic Coastal Plain. The Fall Line lies to the northwest of APG and roughly parallels U.S. Route 40.

The Coastal Plain sediments range in age from Cretaceous to Quaternary. Moving in a southeastern direction, a gradual increase in thickness is accompanied by a decrease in dip for successively younger formations. The dip of the formations ranges from an average of 100 feet per mile (ft/mi) near the basement rock to an average of 10 ft/mi for the upper Tertiary formations. Along with the increase in thickness and decrease in dip, the sediments generally become finer to the east (Dames and Moore, 1972).

Variations, laterally and vertically, in lithology and texture are explained by transgressive and regressive seas. Extremes in the fluctuation of sea level at the end of the Cretaceous and the Paleocene along with widespread erosion explain the absence of formations in some areas (Dames and Moore, 1972).

A generalized lithologic description of the Coastal Plain sediments in Harford County,

Maryland is shown in Table 1 (Bandoian, C.A. and Wardrop, R.T., 1985). Coastal Plain sediments

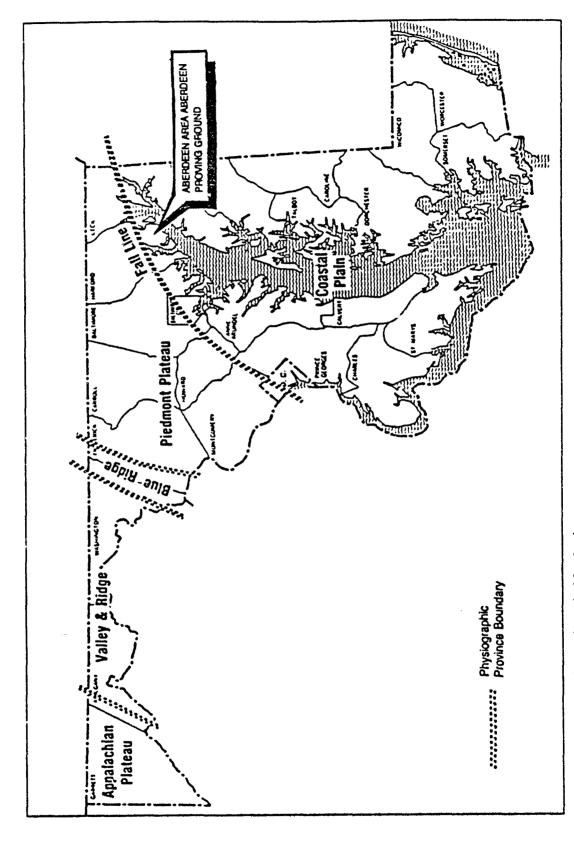


Figure 4. Physiographic Provinces in Maryland.

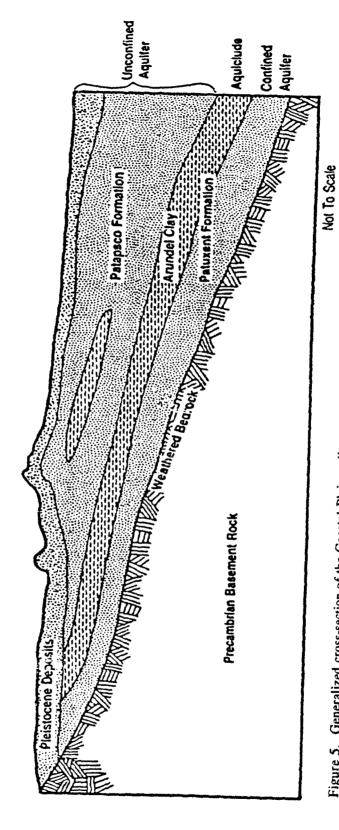


Figure 5. Generalized cross-section of the Coastal Plain sediments.

Table 1. Generalized lithology of the Coastal Plain sediments (Bandoian and Wardrop, 1985)

SYSTEM	SERIES	GROUP	FORMATION	THICKNESS RANGE (ft)	LITHOLOGY (Generalized)	WATER-BEARING PROPERTIES
QUARTERNARY	HOLOCENE	-		0 -30	Clay, silt, sand and gravel	May yield large quantities of water where recharge can be induced from nearby streams
	PLEISTOCENE		Talbot	~20 - 30	Fine to medium silty sand with mixtures of fine gravel and lenses of silt and clay	Water table aquifer where composed of coarse grained waterbearing materials as in Aberdeen and Harve de Grace. Yields upto 500 gpm.
CRETACEOUS	LOWER CRETACEOUS	POTOMAC	Patapsco	06 - 09	Fine to medium sand, silt and clay	Thin and of limited areal extent. Yields some water to domestic wells in Harford County.
			Arundel	40 - 90	Silty clay to clayey silt with lenses of organic silty clay and lignite and ironstone nodules	Not a water-bearing formation except where penetrated by a few wells in outcrop area
			Patuxent	80 - 100	Sitty fine to medium sand with minor clay lenses	Source of water for numerous domestic and small commercial ground water supplies along U.S. Highway 40. Thickens rapidly toward southeast and becomes an excellent aquifer yielding upto 1,000 gpm
PRECAMBRIAN	GLENARM		Wissahickon (undivided)		Saprolite - hard silty clay to clayey silt with some sand lenses	Not a water-bearing formation

in Harford County are divided into three major units: (1) the Lower Cretaceous Potomac group, (2) the Quaternary Talbot Formation (Pleistocene), and (3) Holocene (Recent) sediments. The Lower Cretaceous sediments of the Potomac Group unconformably overlie the Precambrian basement rock. The Potomac Group is comprised of the Patuxent, Arundel, and Patapsco formations in Harford County. "Detailed studies of these formations of the Potomac Group show that no consistent upper or lower boundaries of these formations can be established" (Owens, 1969).

Patuxent Formation

The Patuxent Formation is the basal unit of the Potomac Group that unconformably overlies the Precambrian basement rock. This formation thickens from the outcrop at the Fall Line to over 2,300 feet beneath Ocean City (Hansen, 1972).

Sand, gravel, silt, and clay strata in the Patuxent Formation were produced by fluvial sedimentation. "The formation consists of a complexly related series of channel and point bar sands and gravels interstratified with flood plain silts and clays" (Hansen, 1972). Little horizontal or vertical continuity is exhibited by this unit due to the rapid changes in lithology. "The lithology of the Patuxent Formation is white or light to orange-brown, moderately sorted, angular sands and subrounded gravels. Gray to orange-brown silts and clays also occur and range from less than 25% to greater than 75% of the total formation" (Hansen, 1972).

These stratum changes allow the Patuxent Formation to be considered a multi-aquifer unit with several water-bearing sands. These water-bearing sands are of varying thicknesses and permeabilities. Stratigraphic units range from irregularly bounded sheets to isolated sand bodies.

Arundel Formation

The Arundel Formation overlies the Patuxent Formation. The Arundel Formation is predominantly clay, gray to red-brown in color. Locally small concretionary masses of iron stone are present. The thickness of this formation ranges from 25 feet near the Fall Line to 200 feet downdip (Mildenberger, J. R. and Sgambar, J. P., 1985).

It appears that the Arundel Formations was deposited by a quiet, shallow, fresh-water environment. The massive structure and the presence of lignitic clays "points to deposition in shallow, probably discontinuous backswamp basins maintained by ponded drainage and slow sediment influx" (Glaser, 1969).

The Arundel Formation is not generally considered an aquifer. In the vicinity of Perryman, it is considered to be a confining layer or aquiclude. This confining characteristic permits development of artesian pressures in the underlying Patuxent Formation (Mildenburger and Sgambar, 1985).

Patapseo Formation

Unconformably overlying the Arundel Formation is the Patapsco Formation. The outcrop of this formation parallels the Fall Line in southeastern Baltimore and Harford Counties. The formation thickens to the southeast; beneath Ocean City it is several thousands of feet thick (Hansen, 1972).

Like the Patuxent, the Patapsco is a multiaquifer unit. This formation is the product of fluvial (riverine) and paludal (swampy) deposition. Channel and point bar sands are relatively thick, irregularly bounded sheets that prove to be good aquifers. Sands associated with the clay strata are discontinuous, isolated sand bodies and are not good aquifers (Hansen, 1972; Mildenburger and Sgambar, 1985).

"Lithologically the Patapsco Formation consists of interbedded variegated (gray, brown, red) silt and clay, and argillaceous, subrounded, fine- to medium-grained quartzose sand with minor amounts of gravel reported. Sand percentages range between 25% and 50%. In general, the Patapsco Formation is finer in texture then the Pataxent Formation" (Hansen, 1972).

Pleistogene and Recent Deposits

The Talbot Formation of the Pleistocene series and the alluvium, swamp and marsh deposits of Holocene age outcrop on APG (McMaster, B. and et al., 1981). Owens (1969) noted that much of the Talbot Formation in Harford County lies within Aberdeen Proving Grounds, and that much of the area was not available for study due to limited access and possible dangers associated with a military reserve. Owens (1969) estimated the thickness of the Talbot Formation to be between 40 and 60 ft.

The Talbot Formation consists of two lithofacies in Harford County, a lower, thick bedded, gravelly sand facies and an upper, massive, very clayer silt or silty clay facies (Owens, 1969). The gravelly sand facies is overlain by the silty clay facies irrespective of altitude nearly everywhere in the area.

The depositional environment of the Talbot was at one time considered to be marine. However, the depositional environment of the lower gravelly sand facies was reported by Owens (1969) to be fluvial. Owens (1969) noted the gravels were restricted to distinct channels and the extensive trough cross-stratification in both sandy and gravelly beds are typical of channel fill (point-bar) deposits.

Owens (1969) noted two possibilities for the depositional environment of the silty clay facies. The first was overbank deposits. He noted a similarity between the distribution of this silty-clay facies in Harford County and the distribution of fine-grained lithofacies in the Brandywine area that had been described as overbank deposits. This description suggested a degrading stream as a mode

of deposition because of the preservation of the lithofacies at progressively lower elevations (Owens, 1969).

Owens (1969), also, noted as a second possibility the silty-clay facies might possibly be estuarine or marine, as are the deposits described by others at Sparrow Point east of Baltimore.

Owens discounted this correlation due to thickness and the depth at which the Sparrow Point clay-silt was found.

Alluvial, swamp, and marsh deposits occur in the reaches of the rivers in the region that have become inundated as a result of a rise in sea level (Dames & Moore, 1972). Composition of the alluvial deposits ranges from clay to gravel, while the swamp and marsh deposits consist of silts, clays, and organic matter (Dames & Moore, 1972). Thus, surficial sediments are heterogeneous and vary considerably horizontally. Typically, gravels are at the base and the silts and clays dominate the upper portions.

PART IV: SITE SETTING AND GEOLOGY

Site Setting

APG is located in Harford County on the northwestern shore of the Chesapeake Bay. Due to the proximity of the Chesapeake Bay and the Atlantic Ocean, the climate tends to be moderate as compared to the inland areas (McMaster, et al., 1981). Average temperature is 54.5 °F with an average relative humidity of 73.8%. Precipitation averaged 45.01 inches per year from 1969 through 1990 (Figure 6). The maximum rainfall usually occurs in the summer and the minimum during the winter. Figure 7 shows the average monthly rainfall from January 1969 through December 1990. Precipitation as snowfall averages 12.0 inches (Sisson, 1985). Prevailing winds average 6.8 knots (Sisson, 1985) in a N to NW direction in the winter months and a S to SW direction in the summer months (McMaster, et al., 1981).

APG is bounded on the east, south and west by the Chesapeake Bay and estuaries of Swan Creek and Bush River (Figure 2). Swan Creek enters the Chesapeake Bay at the northeast edge of APG forming approximately 2 miles of the northeastern border of AA-APG. The Bush River enters the Chesapeake Bay at the southern most tip of AA-APG and forms the western border of AA-APG. The Chesapeake Bay forms the eastern and southern border of AA-APG.

AFG is drained by eight rivers and streams (Figure 2). Surface waters on APG tend to be shallow and sluggish with tidal estuaries at the mouths of the streams and rivers. This is attributed to the low elevations of the area and the fact that it is bordered by the Chesapeake Bay (McMaster, et al., 1981). The highly developed northeastern portion of APG is drained by Swan Creek, Dipple Creek, Woodrest Creek and the upper branches of Romney Creek. The southwestern portion of APG, which is primarily undeveloped ranges and test areas, is drained by Mosquito Creek, Delph Creek, the lower half of Romney Creek, and the lower portion of Bush River. Spesutie Island, which is mostly unimproved ranges and test areas, is drained by Back Creek (McMaster, et al., 1981).

Site Geology

Stratigraphy on AA-APG

The Geologic Map of Harford County (Southwick and Owens, 1968) shows the Fall Line located approximately 1 to 1.5 miles northwest of the northwest boundary of APG. Borings that extend to bedrock in the northern portion of APG (Figure 8) show the Precambrian bedrock dips to

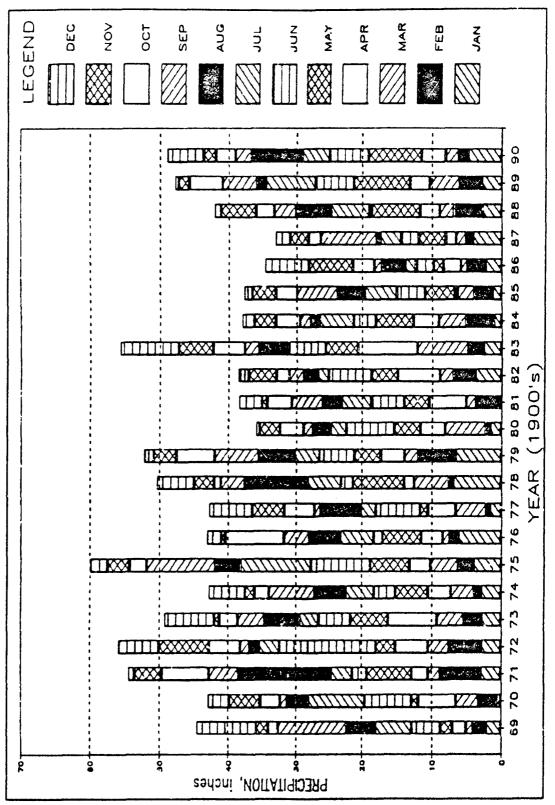


Figure 6. Monthly precipation at Phillips Army Airfield from 1969 thru 1990.

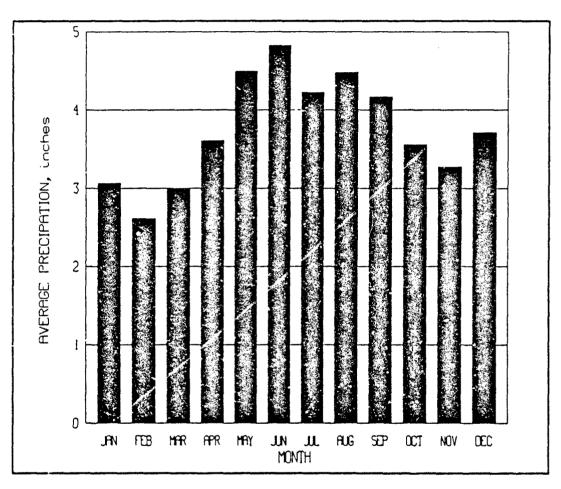


Figure 7. Average monthly precipitation from 1969 through 1990.

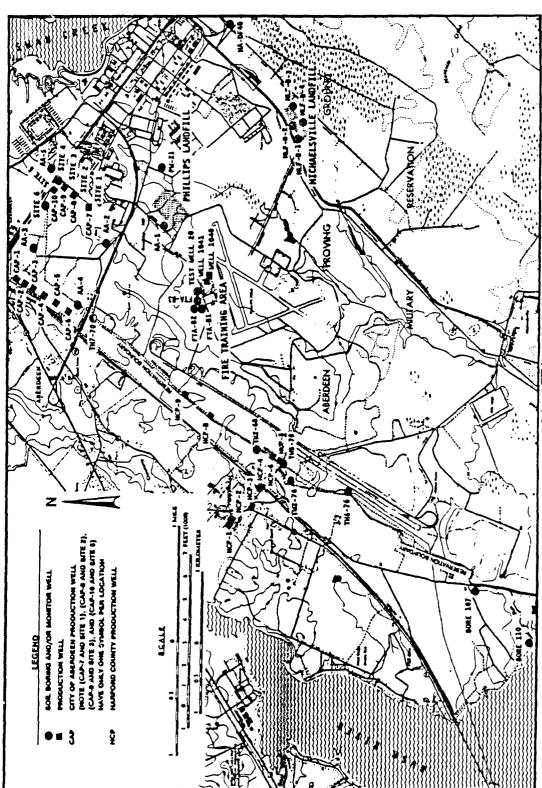


Figure 8. Location of borings and other wells in the vicinity of the AFTA.

Table 2

Depth to bedrock in the northern portion of AA-APG (see Figure 8 for location of Bore/Well)

BORE/WELL No.	TOP OF BEDROCK *ELEVATION, FT	SOIL THICKNESS, FT
TH7-70	-68	130
Site 6	-113	183
НСР-9	-125	165
TH2-68	-138	185
TW5-70	-168	210
Test Well 20	-180	250
TW2-76	-280	335
TH6-76	-240	280
Bore 107	-326	360
Bore 110	-326	395
HA-DF40	-445	481

^{*} Elevation relative to mean sea level.

the southeast at approximately 100 feet per mile (Table 2). The thickness of the soils overlying the bedrock increases as the bedrock dips to the southeast. The soil thickness increases from 183 ft at Site 6 to 481 ft at Well HA-DF40, which are approximately 1.5 and 3.8 miles, respectively, from the Fall Line. The soils directly overlying the bedrock are weather ad bedrock or saprolite. The saprolite varies from a white to green micaceous clay to a silty fine sand. The thickness of the saprolite ranged from about 13 ft at Site 1 to 95 ft at Bore 107.

The city of Aberdeen installed 6 test wells (Sites 1 thru 6) on APG in 1975-76 (Figure 8). The 6 test wells were located approximately 1.3 to 1.7 miles northeast of the FTA. All 6 test wells were drilled to bedrock or the overlying saprolite. The lithologies, as described on the bore logs, are shown in Table 3. The "yellow clay" ranges from 10 to 14 ft thick while the "sand, gravel and clay" range from 52 to 68.5 ft thick. The bottom 13 to 35 ft of the borings are described as green and white clays with rock at the base. The green and white clays are saprolite. There are 85 to 119 ft of mixed clays between the "sand, gravel and clay" and "green-white clays".

Groundwater monitor wells AA-1 thru AA-5 (see Figure 8) were installed in the northern corner of APG by the Corps of Engineers, Baltimore District, in June and July of 1984. Well AA-1 is on the western edge of Phillips Army Airfield Landfill, approximately 2700 west of the AFTA. Wells AA-2 thru AA-5 are from approximately 1 to 1.8 miles north to northeast of the AFTA. The borings for wells AA-1 thru AA-5 are from 99.3 to 100 ft deep. The lithologies of all 5 of the AA borings are similar. The upper 2 to 8.5 ft are silt with clay and fine sands, the next 37.5 to 67.5 ft are gravelly, silty sands (Table 4). All 5 AA borings were terminated in clay. The borings were drilled from 28 to 56 ft into the clay which varies from a gray silty clay to a clayey silt with scattered lenses of silty-clayey fine sands. The gravelly, silty sands are generally brown, silty, medium to coarse, gravelly sands. The bore logs for wells AA-1 thru -5 show a distinct color change from brown to gray near the contact between the gravelly, silty sands and the clay.

Supply wells 1040 and 1041, located approximately 1000 ft southeast of the AFTA, were installed in 1942. The bore logs for these 2 wells show the upper 8 to 10 feet were clay to sandyclay, the next 67 to 71 ft are gravelly, silty sands, and a clay was encountered at 79 ft (elevation - 23.7 ft) at well 1040 and 77 ft (elevation -18.4 ft) at well 1041. The boring at well 1040 extended 4 ft into the clay while the boring at well 1041 extended 44 ft into the clay.

Test Well 20 was drilled in the vicinity of the AFTA in 1942. The boring was drilled to the top of rock at 250 ft. The upper 5 ft was sand and clay. Gravelly, silty sands with lenses of clay and silt extended from 5 to 73.5 ft. The bore log shows hard red clay from 73.5 to the top of rock at approximately 250 ft.

Table 3 Lithologies for the City of Aberdeen Test Wells at Sites 1 thru 6 (see Figure 8 for locations).

... 22

. –	YELL(YELLOW CLAY	SAND, C	SAND, GRAVEL & CLAY	MIXED	MIXED CLAYS	GREEN-WHITE CLAYS	WHITE VS	BEDROCK
T	Depth	Thickness	Depth	Thickness	Depth	Thickness	Depth	Thickness	Depth
	0 to 12	12	12 to 66	54	66 to 184	118	184 to 203	61	i
	0 to 10	10	10 to 78	68	78 to 184	901	184 to 203	61	٤
	0 to 14	41	14 to 72	58	73 to 191	119	191 to 208	17	208
	0 to 11	=	11 to 63	52	63 to 174	111	174 to 187	13	187
	0 to 13	13	13 to 75	62	75 to 160	85	160 to 195	35	195
	0 to 10	10	10 to 71	19	71 to 159	88	159 to 183	24	183
E .	nd Thicknes from grou	Depth and Thickness are in feet. Depth is from ground surface.							

Table 4

Depth and elevation* of the 2 lithofacies of the Talbot formation on AA-APG (see Figure 8).

BORE/	SILT	(with clay and fin	e sand)	4	ELLY, SILTY Sawith interbedded	
WELL #	Depth	Elevation	Thickness	Depth	Elevation	Thickness
Site 1	0 to 12.0	70 to 58	12	12.0 to 66.0	58.0 to 4.0	54
Site 2	0 to 10.0	70 to 60	10	10.0 to 78.5	60.0 to -8.5	68.5
Site 3	0 to 14.0	70 to 56	14	14.0 to 72.0	56.0 to -2.0	58
Site 4	0 to 11.0	70 to 59	11	11.0 to 63.0	59.0 to 7.0	52
Site 5	0 to 13.0	70 to 57	13	13.0 to 75.0	57.0 to -5.0	62
Site 6	0 to 10.0	70 to 60	10	10.0 to 71.0	60.0 to -1.0	61
AA-1	0 to 4.5	60.8 to 56.3	4.5	4.5 to 72.0	56.3 to -11.2	67.5
AA-2	0 to 2.0	55.4 to 53.4	2	2.0 to 51.5	53.4 to 3.9	49.5
AA-3	0 to 7.0	73.8 to 66.8	7	7.0 to 62.0	66.8 to 11.8	55
AA-4	0 to 7.0	50.8 to 43.8	7	7.0 to 44.5	43.8 to 6.3	37.5
AA-5	0 to 8.5	70.3 to 61.8	8.5	8.5 to 52.5	61.8 to 17.8	44
Well 1040	0 to 8.0	55.3 to 47.3	8	8.0 to 79.0	47.3 to -23.7	71
Well 1041	0 to 10.0	58.6 to 48.6	10	10.0 to 77.0	48.6 to -18.4	67
Test Well 20	0 to 5.0	70.1 to 65.1	5	5.0 to 73.5	65.1 to -3.4	68. <i>5</i>
MLF-B-1	0 to 10.5	34.5 to 24.0	10.5	10.5 to 38.0	24.0 to -3.5	27.5
MLF-B-2	0 to 8.0	34.6 to 26.6	- 8	8.0 to 44.0	26.6 to -9.4	36
MLF-B-3	0 to 8.1	30.8 to 22.7	8.1	8.1 to 25.0	22.7 to 5.8	16.9
MLF-B-4	0 to 11.5	29.7 to 18.2	11.5	11.5 to 42.0	18.2 to -12.3	30.5
FTA-B1	0 to 7.5	59.0 to 51.5	7.5	7.5 to 75.0	51.5 to -16.0	67.5
FTA-B2	0 to 11.0	55.5 to 44.5	11	11.0 to 69.0	44.5 to -13.5	58
FTA-B3	0 to 8.0	57.1 to 49.1	8	8.0 to 71.0	49.1 to -13.9	63

Note -- Data for Sites 1 thru 6, Wells 1040 and 1041, and Test Well 20 are from well drillers logs.

- --- Data for AA, MLF, and FTA bores are from detailed soil boring logs.
- --- Surface elevation for Sites 1 thru 6 were estimated from USGS topography maps.
- --- Depth, Elevation and Thickness are in feet. Depth are from ground surface.

^{*} Elevations are relative to mean sea level.

The Michaelsville Landfill (MLF) is located approximately 1.5 miles east-southeast of the AFTA. Four deep soil borings, MLF-B-1 thru -4, were drilled to define the lithology at the MLF. Boring MLF-B-3 was drilled through a stiff waxy clay from a depth of 130 ft (elevation -99.2 ft) to 190.4 ft (elevation -159.6 ft). Silty, gravelly sands were encountered from 190.4 ft to the bottom of the hole at 194.5 ft (elevation -163.7 ft). The other 3 soil borings were drilled up to 30 ft into the stiff waxy clay. The 4 borings have similar lithologies above the stiff clay. Listed below are the 5 general lithologies from the ground surface to the top of the waxy clay:

- 1 -- 8 to 11 ft of clayey silt;
- 2 16 to 36 ft of silty, gravelly sands with scattered lenses of clays and silts;
- 3 56 to 69 ft of interbedded clays, silts and fine sands;
- 4 15 to 25 ft of sand and gravel;
- 5 6 to 14 ft of laminated clays, silts and fine sands.

The clayery silt and silty, gravelly sands (1 and 2, respectively) comprise the two lithofacies of the Pleistocene Talbot Formation, as described by Owens (1969). The interbedded clays, silts, fine sands and gravelly sands (3, 4 and 5) comprise the Cretaceous Patapsco Formation. The borings, except MLF-B-3, were terminated in the stiff clays of the Cretaceous Arundel Formation.

Phillips Army Airfield Landfill (PLF) is located approximately 0.7 mile east of the AFTA. The borings at the PLF are from 30 to 60 ft deep, except for boring AA-1, which is 100 ft deep. The soils in the area of the PLF vary from gravelly, silty sands in the upper 72 ft of boring AA-1 to silt and clay in the upper 47 ft of boring PW-21, which is approximately 2500 ft east of boring AA-1. The thickness of the silt and clay lenses in the upper 30 to 60 ft of soil in the area of the PLF is highly variable.

AFTA Surface

The area surrounding the training pits is relatively flat and covered with grass. Toward the back of the site the regetation changes to thick brush and small trees. Surface drainage is predominantly northwest toward a tributary of Romney Creek. Some drainage from the western portion of the site drains to a low marshy area to the west of the site that also feeds into Romney Creek. According to the Federal Emergency Management Agency (FEMA) flood insurance maps, this area lies in Zone C, which is an area of minimal flooding (FEMA, 1983).

Soils in this area were classified by the Soil Conservation Service (SCS) in the Sassafrass Series. This series "consists of deep, well-drained, gently sloping to steep soils dominantly on undulating uplands, and on some short steeper slopes of the Coastal Plain. These soils formed in old marine deposits of sandy sediment containing moderate amounts of silt and clay" (SCS, 1975) and are the most permeable of the 3 surficial soils found in the area (McMaster, et al., 1981).

Stratigraphy at the AFTA

Three exploratory borings and 12 monitoring wells were drilled as part of the Fire Training Area Hydrogeologic Assessment. A site map showing boring and well locations is presented in Figure 9. A summary of boring and monitor well data are presented in Table 5 and Appendices C, D, E and F. The 3 soil borings, FTA-B1, -B2 and -B3, were drilled to depths of 81.0 ft (elevation -22.1 ft), 122.5 ft (elevation -68.0 ft) and 91.0 ft (elevation -33.9 ft), respectively, and were terminated in a stiff clay. All 3 soil borings can be broken into 3 general zones: an upper silt zone, an intermediate gravelly, silty sand zone and a lower clay zone. The top 7.5 to 11 ft of the 3 borings are a sandy, clayey silt with traces of gravel. The gravelly, silty sands that overlie the lower clay zone are 58 to 67.5 ft thick. None of the 3 borings extended through the stiff clay. The gravelly, silty sands are primarily interbedded lenses of fine to coarse, silty sands with scattered traces of gravel, and silt and clay lenses. The sand, silt and clay lenses are too irregular for confident correlation between borings.

The stiff clay was first encountered at a depth of 75 ft (elevation -16 ft, msl) in boring FTA-B1, 69 ft (elevation -13.5 ft, msl) in boring FTA-B2 and 71 ft (elevation -13.9 ft, msl) in boring FTA-B3. Boring FTA-B2 was drilled 53.5 ft (69 to 122.5 ft) into the clay. The 53.5 ft section of clay in boring FTA-B3 is generally a gray to brown, stiff, plastic, micaceous clay with some scattered thin silty, sandy lenses or stringers. A brittle black clay was noted from 85 to 87 ft (elevation -29.5 to -31.46 ft). Boring FTA-B1 was drilled 6 ft (75 to 81 ft) into a reddish-brown to mottled yellow, stiff, silty clay. Boring FTA-B3 was drilled 20 ft (71 to 91 ft) into a gray mottled with red, stiff, silty clay with lignitized wood chips at 81 ft (elevation -29.3 ft).

The borings for the 12 groundwater monitor wells (FTA-M1 thru FTA-M12) ranged from 25.5 to 37.5 ft deep (see Table 5). The 12 monitor wells were screened approximately 20 to 25 ft into the gravelly, silty sands. The silt ranged from 7 to 11 ft thick and was described as a brown clayey silt. The gravelly, silty sands were generally fine to coarse silty sands with scattered gravel and thin silt and clay lenses. The sands ranged from poorly sorted fine to coarse sands with traces of gravel to well sorted fine to medium grained rounded sands. Organic laminae were present in several of the sand lenses. Lenses of clayey silt ranging from less than an inch up to a few feet thick are scattered throughout the gravelly, silty sands. The thickest silt lense, noted in the gravelly, silty sands, is from a depth of 20 to 25 feet in well FTA-M10. Cross-sections A-A' thru E-E' (Figures 10 thru 15) depict the stratigraphy at the AFTA.

The gravelly, silty sands and the silt unit capping it represent the two lithofacies of the Pleistocene Talbot Formation described by Owens (1969). Both units were present in all 3 soil borings (FTA-B1 thru -B3) and borings for the 12 groundwater monitor wells. The thickness of the

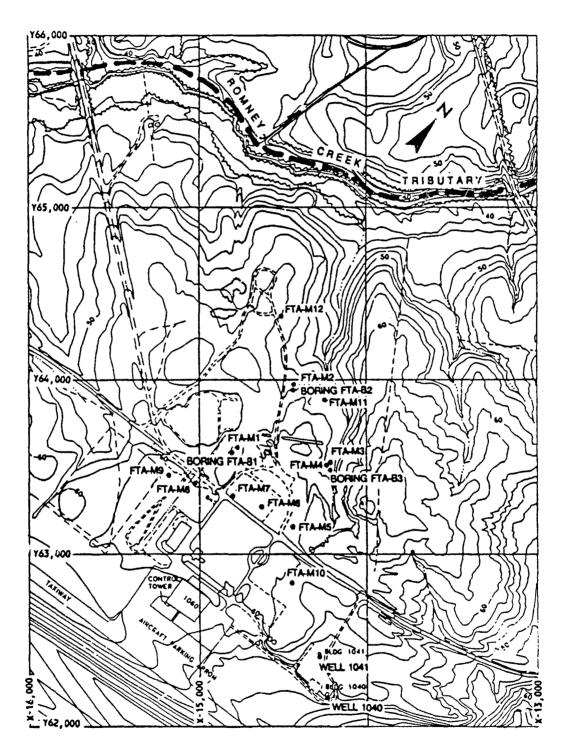


Figure 9. AFTA site map showing the location of soil borings and monitor wells.

Table 5

Data for wells FTA-M1 through FTA-M12 and soil borings FTA-B1 through FTA-B3

	APG S COORD	APG SURVEY COORDINATES	*ELEV	*ELEVATION, FT	DEPTH FR	DEPTH FROM GROUND SURFACE,	SURFACE,	*ELEVATION
WELL NUMBER	×	*	GROUND SURFACE	TOP OF PVC CASING	BOTTOM OF HOLE	TOP OF SCREEN	BOTTOM	OF SCREENED INTERVAL, FT
FTA-M1	-14776 98	07 61383	60.03				SCREEN	
ETA MO		03012.79	20.03	60.42	31.8	9.61	29.6	39.0 - 29.0
LIA-M2	-14443.27	63994.53	54.89	56.49	28.2	17.9	27.9	370.270
FTA-M3	-14213.29	63529.95	57.33	59.26	25.5	15.2	35.7	27.0 - 27.0
FTA-M4	-14230.20	63516.79	57.18	59.57	30.6	2000	20.0	42.1 - 32.1
FTA-M5	-14444.87	63218.74	61.26	63.13	25.2	0.02	30.0	31.2 - 27.2
FTA-M6	-14632.43	63274.29	61.05	50.69	24.6	24.9	34.9	36.4 - 26.4
FTA-M7	-14808.11	63342.49	69.62	20.23	2.50	74.1	34.1	37.0 - 27.0
FTA-M8	-15019 05	20306.02	20.75	01.03	13.5	22.1	32.1	37.4 - 27.4
	LO.010C1	00.08000	59.39	61.97	33.5	23.0	33.0	364-264
FIA-M9	-15196.18	63458.79	59.48	61.35	33.5	22.5	32 5	27.0 020
FTA-M10	-14446.43	62838.49	63.21	65.11	375	27.0	32.3	37.0 - 27.0
FTA-MII	-14250.87	63892.67	54.18	55.92	0,90	0.74	37.0	36.2 - 26.2
FTA-M12	-14513.24	64373.20	55.77	72.65	23.6	0.61	62.0	39.2 - 29.2
				01:15	C.12	16.5	26.5	38.8 - 28.8
BORING								
FTA-B1	-14808.70	63591 24	00 83					
FTA.B7	14442 10	(3000)	20.22		81.5	*Elevation bottom of hole	om of hole	-22.51 ft
70 11 1	-14447.10	03938.42	55.54		122.4	*Elevation bottom of hole	om of hole	-66 86 fi
FIA-B3	-14214.32	63492.48	57.08		016	*Flavotion Lote	1 1 J 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32.52
+ Elevatic	Elevations are relative to mean sea level.	in sea level.				LICYALION DOUGHIN OF BOLE	our or noie	-33.92 ft

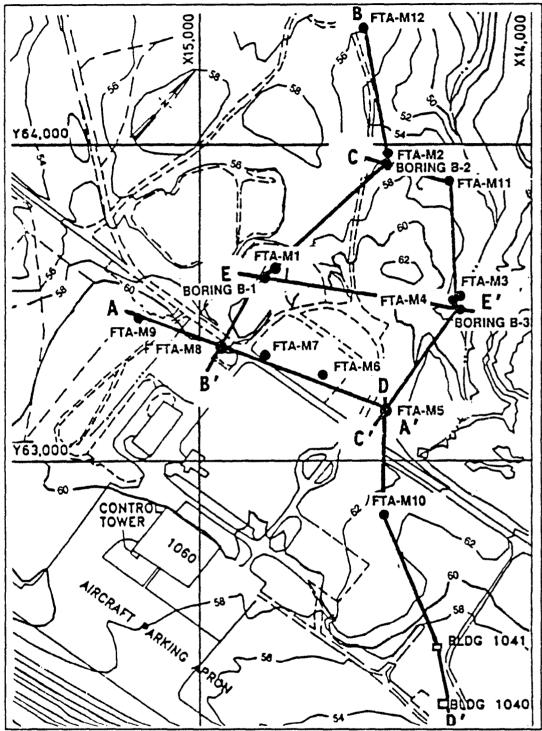


Figure 10. Location of cross-sections A-A' thru E-E' at the AFTA.

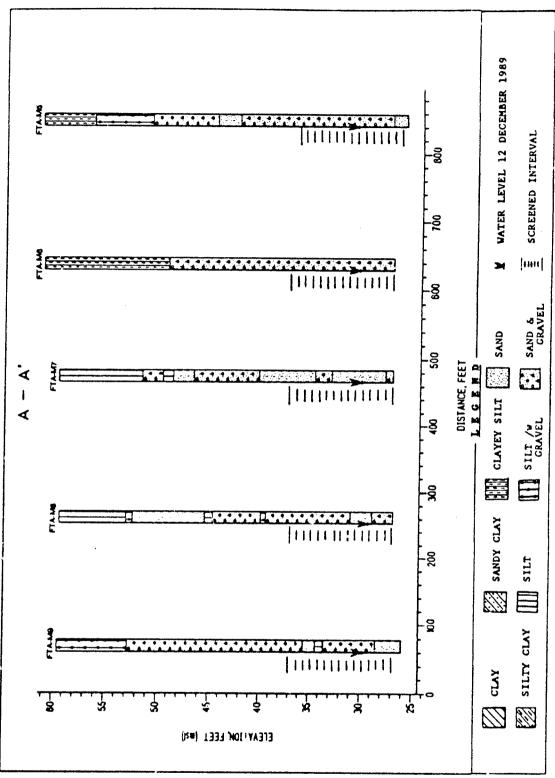


Figure 11. Cross-section A-A' at AFTA.

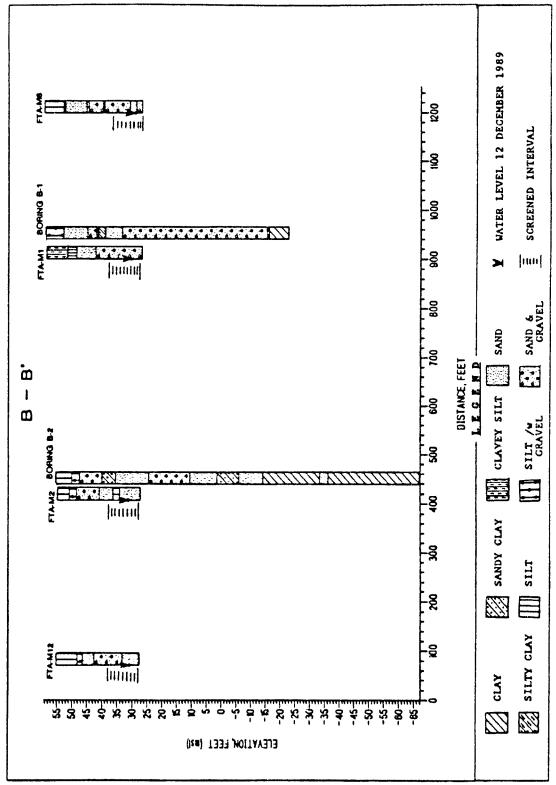


Figure 12. Cross-section B-B' at AFTA.

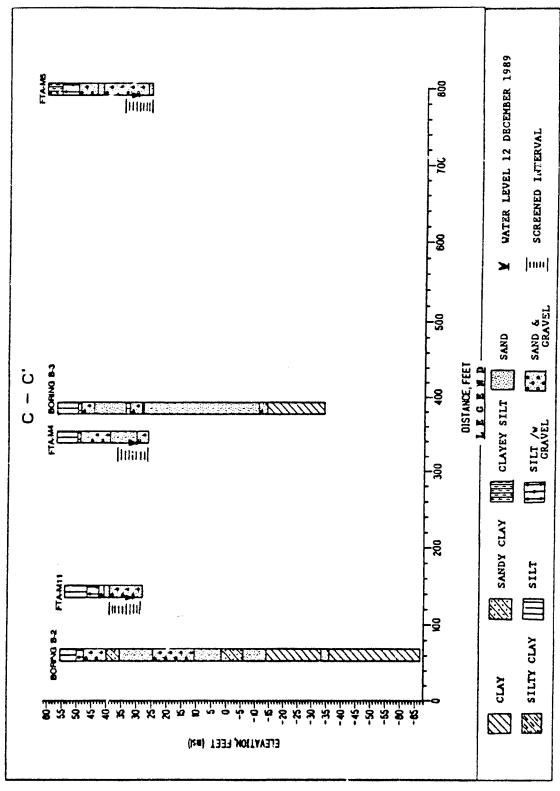


Figure 13. Cross-section C-C' at AFTA.

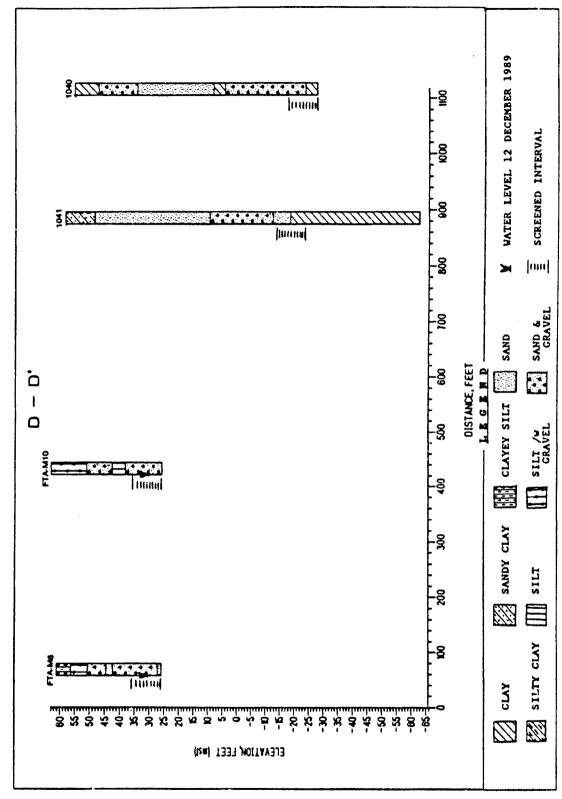
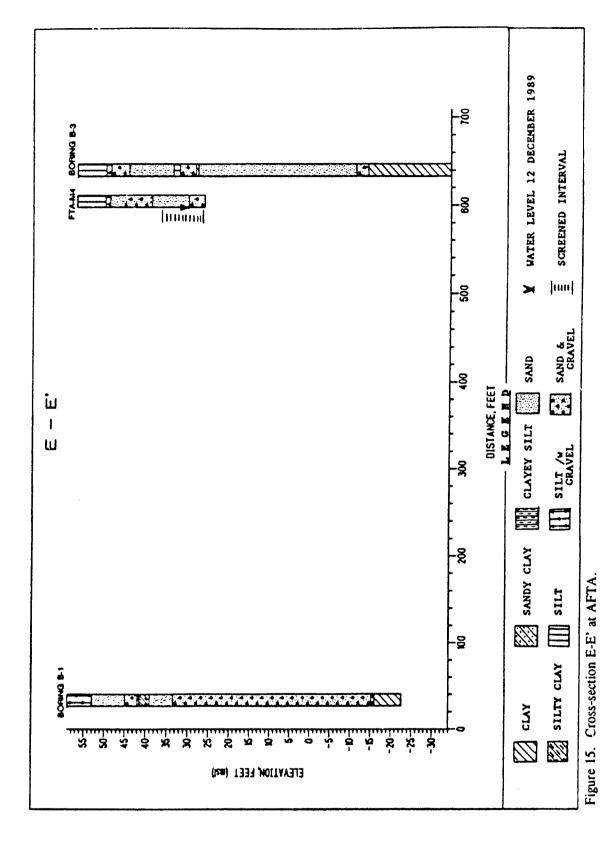



Figure 14. Cross-section D-D' at AFTA.

Talbot ranged from 69 ft at FTA-B2 to 75 ft at FTA-B1. Table 4 shows the thickness of the Talbot ranged from 25 to 79 ft in areas surrounding the AFTA. The thickness of the Talbot decreases away from the Fall Line. The thickness of the Talbot decreases from around 60 to 70 ft in the northern area of APG to approximately 30 ft thick at the MLF, well HA-DF40 and bore 107.

Underlying the gravelly, silty sands of the Talbot Formation are the stiff Cretaceous clays. Soil borings FTA-B1 thru -B3 extended from 6 to 53.5 ft into the clay. None of the soil borings at the AFTA extended through the clay. The elevation of the Talbot-Cretaceous contact ranged from -13.5 ft at FTA-B2 to -16.0 ft at FTA-B1. The Arundel clay is at elevation -99.2 to -190.4 ft at boring MLF-B-3, which is approximately 1.5 miles southeast of the AFTA. As the bedrock dips to the southeast at approximately 100 feet per mile the dip of the successively younger formations decreases. The Pleistocene Talbot Formation overlies the Cretaceous Arundel Formation at the AFTA.

Drilling and Well Installation Procedures

Drilling

A Failing 1506 Holemaster operated by a two-man drill crew was used in drilling, sampling and well installation. A geologist logged the borings and directed the installation of the monitor wells. Each drill site was monitored with a magnetometer and cleared of surface vegetation before drilling equipment was moved on location. The drill crew and geologist were dressed in Level "D" protection.

Prior to, during and after drilling operations, the location, boring annulus, samples and drilling fluid were monitored primarily with an Organic Vapor Analyzer (OVA) and an explosimeter. A methanometer and an HNU meter were used to monitor for methans and volatile organic compounds (VOCs).

Bentonite mud was used while drilling the soil and well borings. All soil borings were plugged with cement grout, from total depth to the surface. Only potable water was used during drilling and well installation.

Prior to moving equipment to a drill site, the equipment was washed with a detergent and thoroughly rinsed. The equipment (rig, drill pipe, casing, drill bits, sampling equipment, etc) was then steam cleaned.

Well Installation

Twelve monitor wells were installed at the AFTA site according to EPA's RCRA Ground-Water Monitoring Technical Enforcement Guidance Document (TEGD) (Environmental Protection

Agency, 1986).

The 12 monitor wells are 4-in schedule 40 PVC pipe with 0.010-in slotted 10 ft PVC screens. The bottom of the well screens have a PVC base plate that extends 0.5 ft below the screen. A quartz filter sand of 20-40 sieve size was tremmied from the bottom of the boring to approximately 5 ft above the top of the PVC screens. A 3-5 ft bentonite seal was placed above the filter sand. The well was grouted to within 3 ft of the ground surface using a Type V cement and 3% bentonite mixture. The grout was pumped in from the bottom (top of the bentonite seal) through a 1.5-in tremmie pipe. A bentonite plug was placed in the top 3 ft of the boring. The top of each well has a PVC vented cap. The riser pipes are protected at the surface by 6-in square steel protective casing with locked caps. These protective casings extend 3 ft below ground surface which is the approximate maximum depth of frost penetration in this area. At ground surface, an apron of bentonite covered with gravel with a radius of 3 ft surrounds each well. A well construction diagram for each well is in Appendix E.

Wells were developed following the U.S Army Toxic and Hazardous Materials Agency (USATHAMA) requirement of removal of at least 5 volumes of the standing water in the well plus the annulus. Methods of development included pumping and surging the wells.

PART V: HYDROGEOLOGY

Aguifer Structure and Properties

Aguifer Structure

Soil borings FTA-B1, -B2 and -B3 were drilled to depths of 81.0 ft, 122.5 ft and 91.0 ft, respectively. All three borings were terminated in a stiff clay (Arundel Formation). The clay was encountered at depths of 75 ft, 69 ft and 71 ft (elevations -16.0 ft, -13.5 ft and -13.9 ft, respectively) in borings FTA-B1, -B2 and -B3, respectively. The sediments above the stiff clay consisted of 58 to 67.5 ft of gravelly, silty sands overlain by 7.5 to 11 ft of silty clay. The gravelly, silty sands are primarily interbedded lenses of fine to coarse, silty sands with scattered traces of gravel, and discontinuous silt and clay lenses. The lenses within the gravelly, silty sands are too irregular to correlate with any confidence between borings. The silty clay and gravelly, silty sands comprise the 2 lithofacies of the Pleistocene Talbot Formation.

The water table aquifer at the AFTA is comprised of the lower 40 to 45 ft of the gravelly, silty sands of the Talbot formation. The water table is generally 25 to 30 ft below ground surface at elevation 31 to 32 ft, msl (Appendix G). Wells FTA-M1 thru -M12 are generally screened from elevation 27 to 37 ft, msl

Borings and well logs (see Table 4) in the vicinity of the AFTA show the silty clay and gravelly, silty sands lithofacies of the Talbot Formation are generally consistent over the areas to the north, northeast and southeast of the AFTA. The thickness of the silty clay facies are generally from 7 to 11 ft while the thickness of the gravelly, silty sand facies thins to the southeast, away from the Fall Line. The thickness of the gravelly, silty sand facies decreases from approximately 60 to 70 ft in the northern area of AA-APG to approximately 30 to 50 ft at Michaelsville Landfill. The upper 30 to 60 ft of soil in the area of the PLF, which is approximately 0.7 miles east of the AFTA, varies from gravelly, silty sands to thick lenses of silt and clay. The upper 47.6 ft of soil at boring PW-21 (see Figure 8) was silts and clays while boring PW-17, located approximately 800 ft to the west had clay from 0 to 12 ft, sands and gravel from 12 to 17 ft, clay from 17 to 26 ft, and sand from 26 to 40 ft.

The AFTA, AA and City of Aberdeen Test Well boring logs show a clay underlying the gravelly, silty sands in the area of AA-APG north of the AFTA. Water well drillers logs for Test Well 20 and the City of Aberdeen Test Wells (1 thru 6) show clay from the base of the gravelly, silty sands (Talbot Formation) to the top of bedrock.

Aquifer Properties

No aquifer tests have been conducted on the monitor wells at the AFTA. A pump test was conducted (Baltimore District, 1983) at supply well 1040 to determine the quantity and quality of

water available at wells 1040 and 1041 (Figure 8). Well 1040 was pumped at 300 gpm for 24 hours. The transmissivity for wells 1040 and 1041 were calculated to be 95,422 and 95,500 gpd/ft, respectively. Since the saturated thickness of the aquifer was 55.85 ft, the hydraulic conductivity was 1709 gpd/ft², or 8.1 x 10⁻² cm/sec.

Aquifer (slug) tests have been conducted at the PLF (U.S. Army Corps of Engineers, 1980) and MLF (Miller, et al, 1990) on monitor wells screened in the gravelly, silty sands of the Talbot formation. Table 6 lists the results of the aquifer tests. The hydraulic conductivity values ranged from 0.62×10^4 to 70.41×10^4 cm/sec in the wells screened at the water table and from 1.09×10^4 to 115.19×10^4 cm/sec in the wells screened at the bottom of the aquifer. The average hydraulic conductivity was 1.6×10^{13} cm/sec for the water table wells and 3.2×10^{13} cm/sec for the deeper wells.

Hydraulic conductivity measurements were performed in the laboratory on three undisturbed samples of Arundel clay from the MLF (Miller, et al, 1990). The hydraulic conductivity values ranged from 5.06×10^{-8} to 1.60×10^{-6} cm/sec and had an average value of 5×10^{-7} cm/sec.

Groundwater Flow

Areal Groundwater

The shallow or water table aquifer on AA-APG is in the Talbot Formation. The ground-water flow patterns in the shallow aquifer are dependent on the location on AA-APG. The ground-water flow patterns are affected by factors such as the distance from natural discharge points, the location and size of recharge zones, lithology, seasonal fluctuations in precipitation, and discharge by production wells.

The groundwater flow direction along the northwest boundary of AA-APG in the area of Sod Run Creek is to the southwest where the shallow aquifer discharges into the Bush River (Figures 16 and 17). Figures 16 and 17 show the seasonal drop in groundwater levels from the summer months when precipitation is normally the highest to the winter months when precipitation is normally the lowest. The water level contours on Figure 17 also show the effects of production wells on groundwater flow.

Ground monitor wells AA-1 thru -5 are located north of the AFTA (Figure 8). Monthly and/or quarterly water level data from the AA wells show the fluctuations that occurred in the water table from September 1986 thru March 1990 (Figure 18 and Appendix H). The monthly water level data from February 1987 thru September 1988 shows the seasonal fluctuations in the water table with

Table 6
Results of aquifer tests in the Talbot formation

	,			
SITE	WELL No.		K, cm/sec x 10 ⁻⁴	AQUIFER MATERIAL
PLF	PW-14	Т	4.1	silty sand & silty clay
	PW-14	Т	5.4	silty sand & silty clay
	PW-15	Т	1.2	sand & gravel
	PW-16	T	19 .0	sand & gravel
MLF	WES-M-1	Т	2 .0	silty sand
	WES-M-5	Т	0.62	sand
	WES-M-9	Т	11.49	sand
	WES-M-14	Т	70.41	sand & gravel
	WES-M-18	T	9.81	sand & gravei
	WES-M-21	Т	5.56	sand
	WES-M-22	Т	46.93	sand
	WES-M-24	T	15.41	sand
	WES-M-3	В	1.09	sand/interbedded clay, silt & sand
	WES-M-6	В	3.19	sand
	WES-M-11	В	36.56	sand & gravel/interbedded clay, silt & sand
	WES-M-15	В	1.33	sand
	WES-M-19	В	115.19	sand & gravel
	WES-M-23	В	114.73	sand & gravel
	WES-M-25	В	1.81	sand/interbedded clay, silt & sand

PLF - Phillips Army Airfield Landfill

MLF - Michaelsville Landfill

T -- well screened at top of aquifer

B - well screened at base of gravelly, silty sands

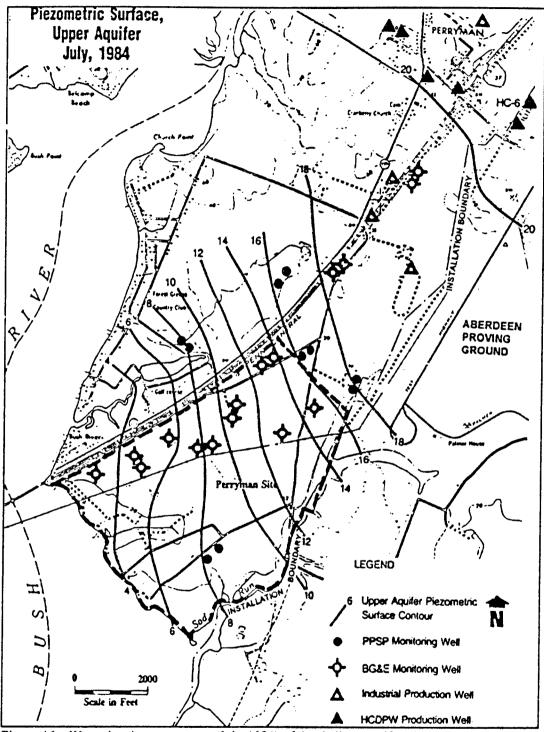


Figure 16. Water level contour map (July 1984) of the shallow aquifer along the northwest boundary of AA-APG (Bandoian and Wardrop, 1985).

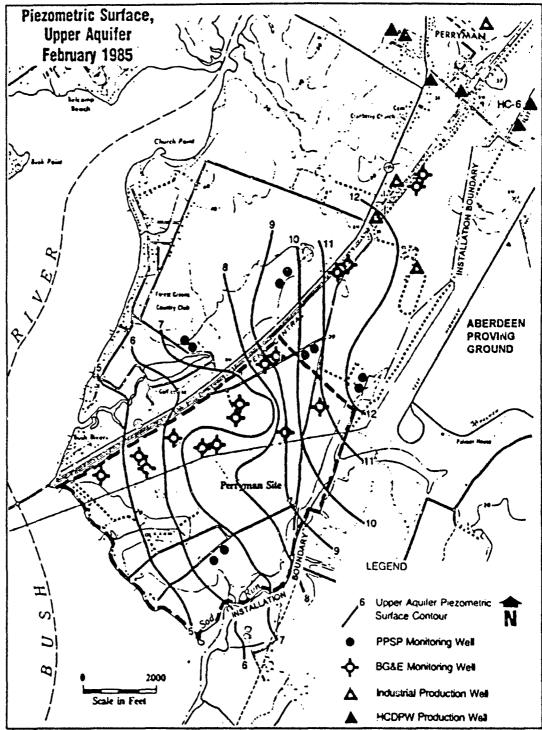


Figure 17. Water level contour map (February 1985) of the shallow aquifer along the northwest boundary of AA-APG (Bandoian and Wardrop, 1985).

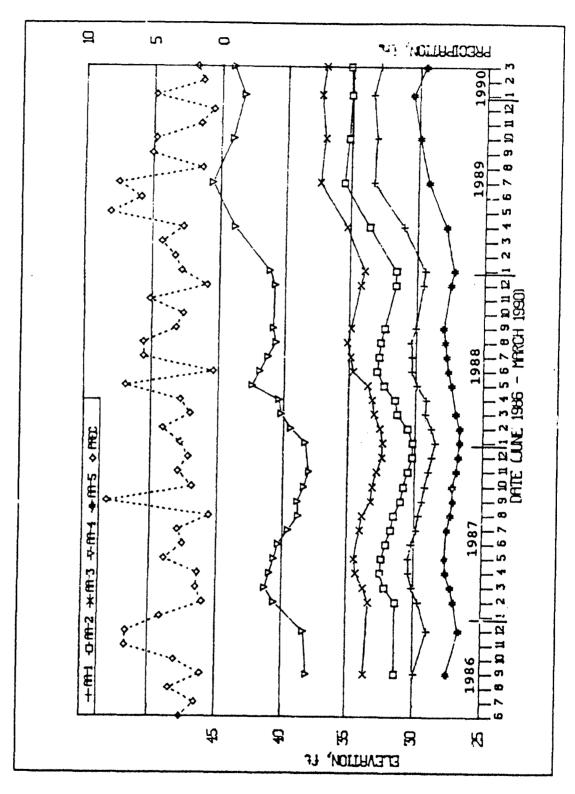


Figure 18. Water level data for wells AA-1 thru AA-5.

the higher water levels corresponding to the summer months when precipitation was highest and the lower water levels to the winter months when precipitation was the lowest. The groundwater flow direction is not effected by the seasonal fluctuations in the water level. Figure 19 shows water table contour maps for 6 sets of water level data. Figure 18 was used to select 6 sets of that would represent the seasonal fluctuations in the water table. The 6 sets of data are:

1. September 1986 - the initial set of water level data

2 November 1987 - water levels declining; near seasonal low

3 May 1988 - water levels rising; well AA-4 at highest level while other 4 AA wells still rising

4 August 1988 - water level declining in wells AA-4 and AA-2, and

rising in wells AA-1, AA-3 and AA-5

5 July 1989 - highest water levels recorded for wells AA-1 thru

AA-4; AA-5 still rising

6. March 1990 - final set of water level data.

The groundwater flow direction is consistently to the east, even during seasonal fluctuations in water levels.

All 5 of the AA wells reflect the seasonal variations in precipitation, however there is a significant difference in the amount of change that occurs in each well. Figure 18 shows the maximum change in water level occurs at well AA-4 and the minimum change occurs at well AA-5. The location and nature of the natural recharge and discharge areas are a primary cause of the variability in water levels changes. The water levels in the AA wells may wells may also be affected by the City of Aberdeen (CAP) production wells (Figure 8). Figure 20 shows the average daily pumpage for the CAP wells. The CAP wells average daily pumpage from January 1986 thru December 1990 was 1.19 million gallons per day (mgd). The average daily pumpage increased from 1.06 mgd in 1988 to 1.26 mgd in 1989 and 1.29 mgd in 1990. The average daily pumpage is normally higher in the summer months and lower in the winter months. All of the CAP wells pump from the Talbot formation. CAP wells 1, 2 and 3 have not been used since the inid-1980's. There are no noticeable effects of the CAP wells on the water table contour maps (Figure 19). The May and August 1988 water table contour maps correspond to average daily pumpage rates of approximately 1.35 mgd.

Water level data from the AFTA, PLF and the AA wells show the groundwater flow directions in the area to the north of the AFTA vary from the south to the east. Figure 21 shows water level contour maps for January and March 1990. The groundwater flow direction changes

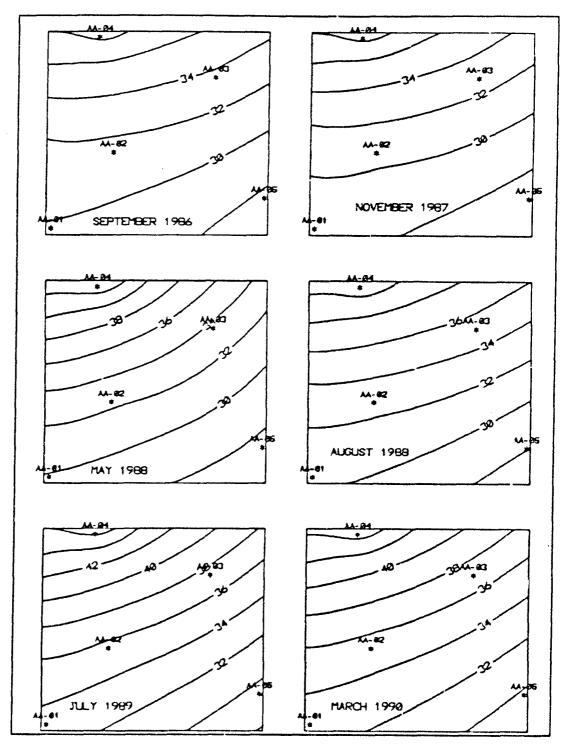


Figure 19. Water level contour maps using data from wells AA-1 thru AA-5. Contours are in feet. See Figure 8 for well locations.

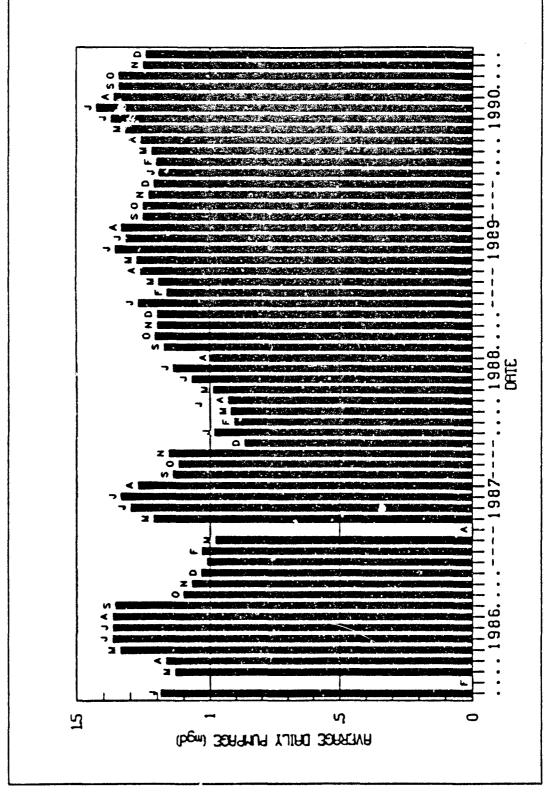


Figure 20. Average daily pumpage for the City of Aberdeen wells.

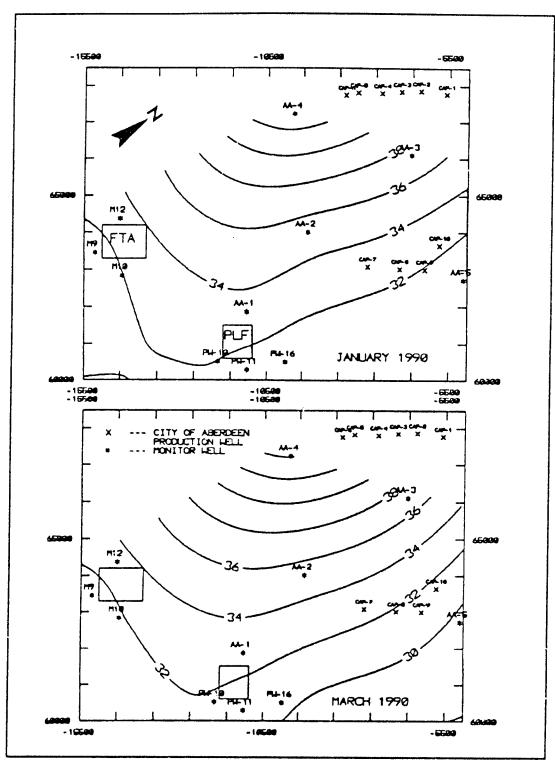


Figure 21. Water level contour maps (January and March 1990) of the northern area of AA-APG.

from due south at the AFTA to easterly at the PLF and areas to the north of the PLF.

Harford County has 8 groundwater production wells (HCP) to the west of the AFTA (see Figure 8). Wells HCP-5, -6, -8 and -9 are located along the west boundary of AA-APG, just inside the boundary fence, while wells HCP-1, -2, -3 and -4 are located a few thousand feet west of wells HCP-5 and -6 in Perryman, Maryland. Wells HCP-8 and -9 are approximately 4200 ft and 5200 ft respectively, west of the AFTA. Wells HCP-5 and -6 are approximately 8000 ft west-southwest of the AFTA. Wells HCP-5, -6 and -9 are partially screened in the Talbot formation. Well HCP-8 is screened in the deeper Cretaceous sands. There are no production rates for each well. Each well runs from 16 to 20 hours a day. Figure 22 shows the average daily pumpage for the HCP wells. The average daily pumpage has increased from 2.6 mgd in 1988 to 3.3 mgd in 1989 to 3.5 mgd in 1990.

AFTA

Seven rounds of water level data were collected at the AFTA from December 1989 thru October 1990. Figure 23 shows the changes in the water table at wells FTA-M1 thru -M12, except for well FTA-M3 which is dry. The changes in water levels correspond to the fluctuations in seasonal precipitation. The water level rises in the summer months when precipitation is the highest and declines in the winter months when precipitation is the lowest. The water levels at all the AFTA wells have the same general response to an increase or decrease in precipitation. The only noticeable difference in water level responses in the AFTA wells was at wells FTA-M2, -M11 and -M12 in February 1990. The water level in wells FTA-M2, -M11 and -M12 increased 0.26 ft, 0.14 ft and 0.10 ft, respectively, from January 1990 to February 1990 while decreasing in all the other AFTA wells. Wells FTA-M12, -M2 and -M11 are located approximately 850 ft, 1150 ft and 1200 ft, respectively, southeast of a small drainage that flows into Romney Creek. The increases in the water levels at wells FTA-M12, -M2 and -M11 in February 1990 resulted from groundwater recharge from the small drainage. Precipitation had increased from an unusual low of 0.59 inches in December 1989 to a higher than average 4.84 inches in January 1990. The groundwater recharge was not as noticeable in the other AFTA wells which are further from the small drainage.

The groundwater flow direction is to the south, as shown in Figure 21. Figures 24 thru 30 are water table contour maps for the 7 rounds of water level data collected from December 1989 thru October 1990. The groundwater flow direction to the south and hydraulic gradient of 0.002 remained constant during the seasonal fluctuations in water levels.

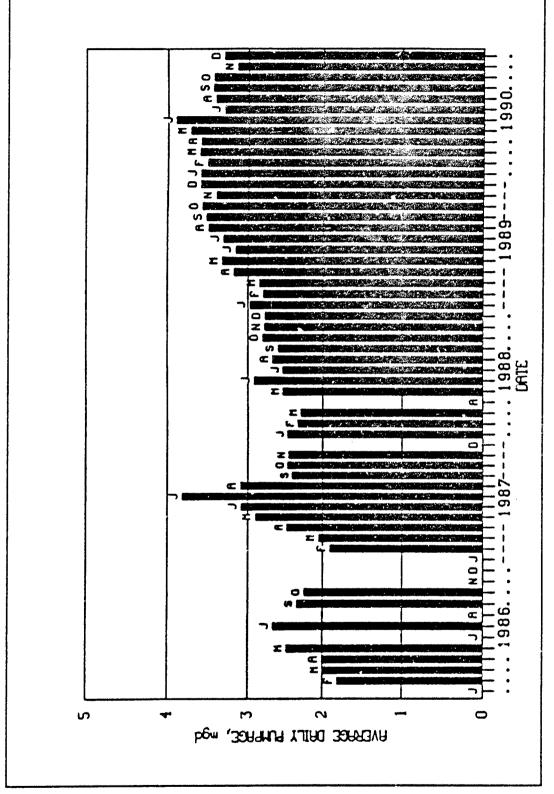
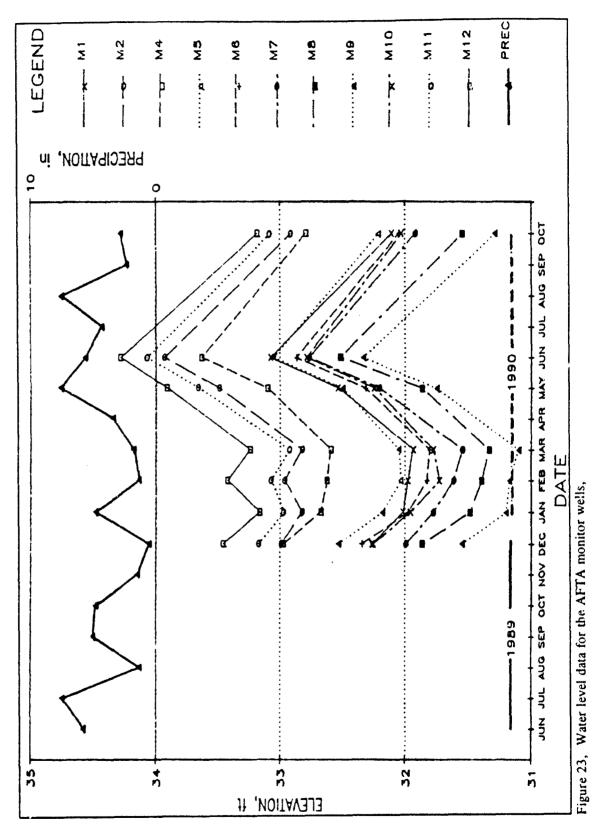



Figure 22. Average daily pumpage for Harford County production wells.

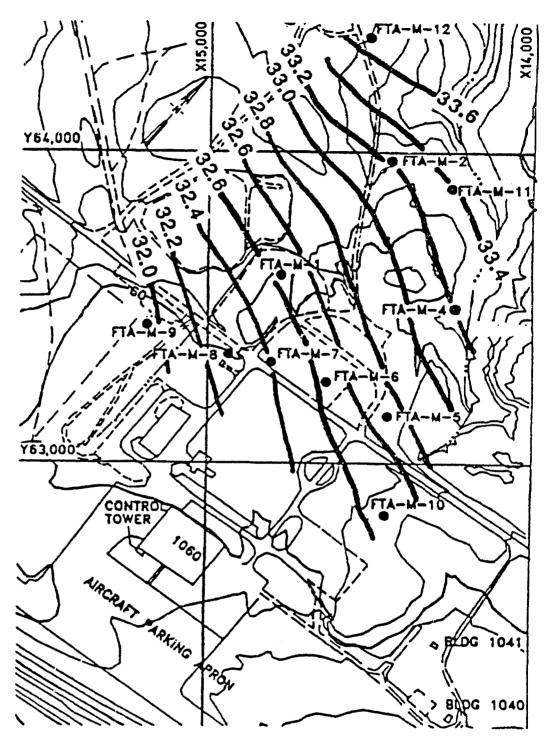


Figure 24. Water level contour map (12 December 1989) at the AFTA.

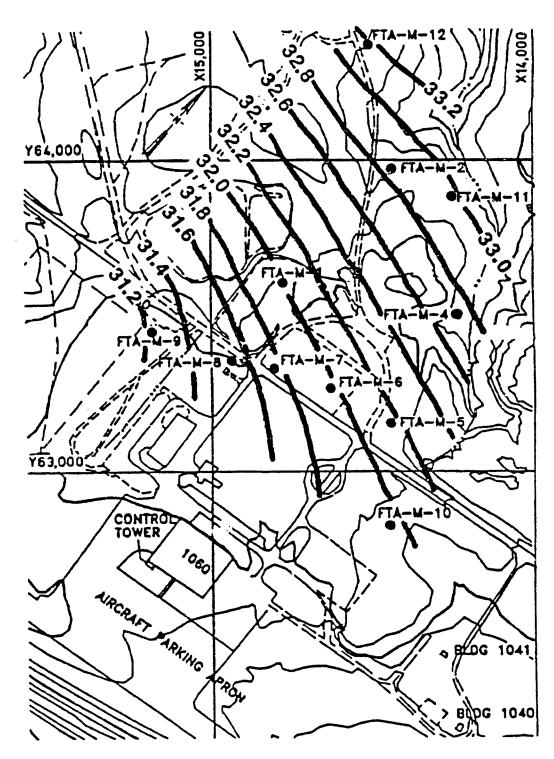


Figure 25. Water level contour map (12 January 1990) at the AFTA.

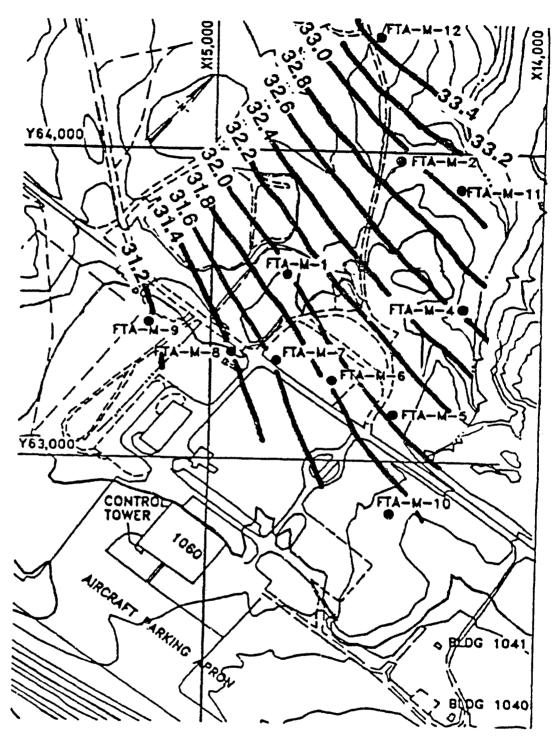


Figure 26. Water level contour map (28 February 1990) at the AFTA.

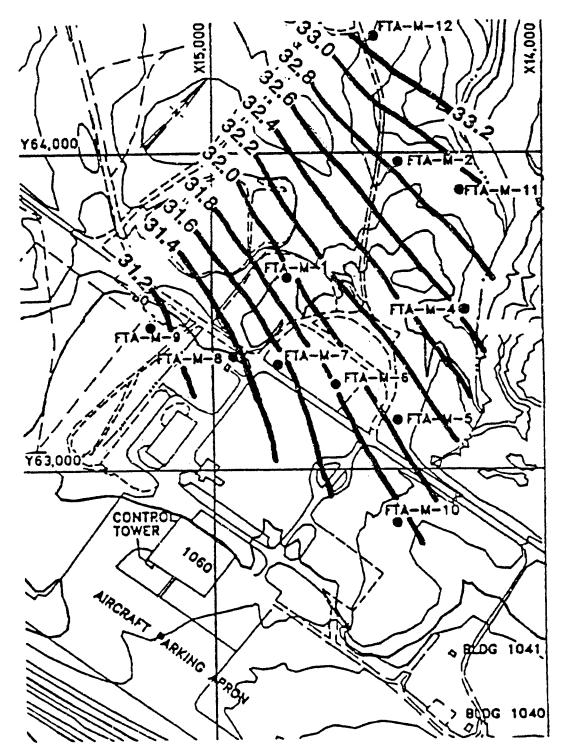


Figure 27. Water level contour map (26 March 1990) at the AFTA.

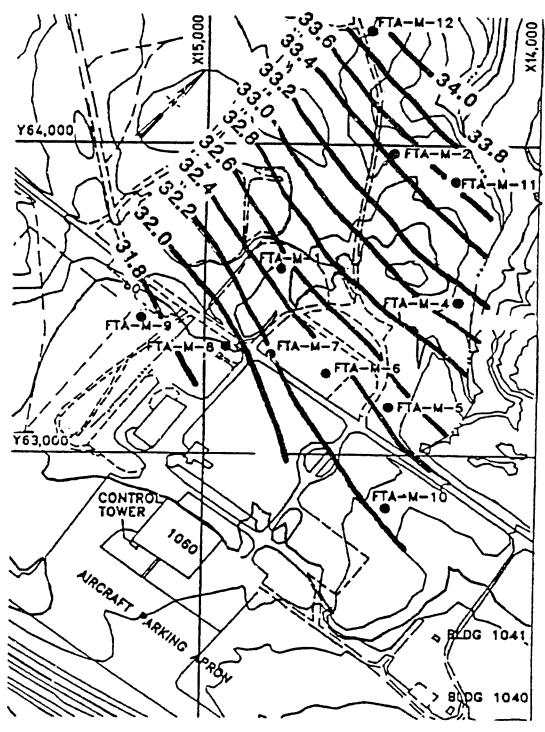


Figure 28. Water level contour map (30 May 1990) at the AFTA.

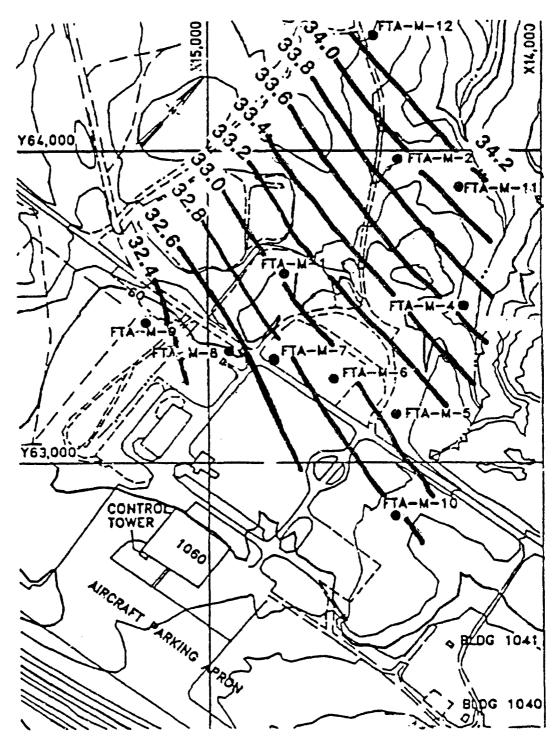


Figure 29. Water level contour map (28 June 1990) at the AFTA.

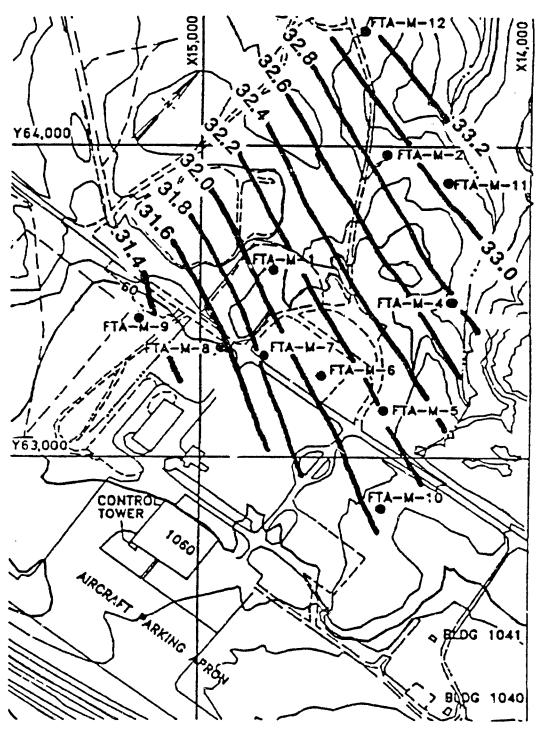


Figure 30. Water level contour map (31 October 1990) at the AFTA.

PART VI: SAMPLING AND ANALYSIS

Overview

This part describes procedures used in cleaning sample containers, purging wells, sampling wells, collecting surface water samples, collecting soil samples, cleaning equipment, maintaining chain-of-custody, and preserving samples. This part also discusses the analytical techniques used for chemical analysis of the samples.

Groundwater Sampling

A bound logbook was used to keep a record on individual wells. The items listed below were recorded in the logbook.

- a. The site location.
- b. The name of individuals involved in sampling.
- c. The well identification number.
- d. The well depth
- e. The water level.
- f. Amount of water purged in gallons.
- g. Note if the well went dry or recharged slowly.
- h. Note if the well was unlocked or had no well cap.
- i. Conductivity, pH, and temperature readings before purging and/or after sampling, if appropriate.
- j. HNU readings of well headspace.
- k. Any unusual odor and/or color of samples.
- 1. Surface water and soil sample locations (a sketch was preferred).

The purging equipment used to remove three well volumes before the water sample was taken included:

- a. 3.5" OD submersible pump.
- b. 10-ft sections of pvc discharge pipe.
- g. Gas powered generator.
- d. 3.5" OD pvc hailer.
- g. 1/4" nyion rope.

A teflor batter was used to collect samples from each well. Teflor is the material of choice

for use in sampling inorganic or organic contaminants of interest. This material is least likely to introduce significant sampling bias. Tetlon is the easiest material to clean in order to prevent cross-contamination. The following sampling equipment was used:

- a. 1.5" OD teflon bailer.
- b. Spool of teflon cable.
- ç. Sample containers.

All samples were placed in appropriate containers that had been cleaned according to the protocols described in the paragraph on Sample Containers. The appropriate preservative was added to the collected sample and the container was securely capped. Sample containers were labeled and logged in the logbook. The samples were placed in ice chests immediately after sampling and delivered to the laboratory within accepted holding times. The samples were kept on ice during shipment and stored at 4°C prior to chemical analysis.

Equipment used for making field measurements of water levels, well depths, temperature, conductivity, salinity, volatile gases, and pH prior to purging or sampling the well included the following items.

- a. pH meter.
- b. Salinity/Conductivity meter.
- c. M-Scope.
- d. HNU meter.
- e. Filtering apparatus.

Field filtering equipment was used to filter groundwater samples to be analyzed for metals and TOC. The filtration step was done to allow for determination of soluble metals and TOC. A pressure filtration apparatus with a 0.45 micron high capacity filter was used to filter groundwater samples in the field. Filtration was not required for surface water samples.

Field Measurements and Purging of Wells

Prior to purging of the monitoring wells, HNU readings were taken in the headspace of each well. The water level and the well depth of each well were measured from top of casing and recorded before purging began. The purge volume was then determined by calculating the three well volumes required for removal. The equations used for calculating purged volumes of water follows:

A (cu ft) =
$$0.8 \times (d^2) \times (h-c)$$

B (gals) = A x 7.48 gal/ft³
V (gals) = $3 \times B$

where $A = \text{volume of the well, } \hat{t}^3$

B = volume of the well, gals

b = well depth, ft

c = depth to water level, ft

d = diameter of the well, ft

V = volume to be purged, gal

After the volume of water to be purged had been determined, the water was removed by pumping or bailing. If the well recharged quickly and/or contained 20 gals or more of water to be purged, the well water was removed with a submersible pump. If the well recharged slowly and/or contained less than 20 gals of water, purging was done by bailing the water with a PVC bailer. Nylon rope was used to lower the pump or bailer into the wells. A new rope was used for purging each well. As mentioned earlier, the purged water and excess water from cleaning equipment or sampling were drummed for subsequent EP toxicity testing and disposal. The purging apparatus was cleaned and decontaminated before use in another well to prevent cross-contamination.

Sampling Of Groundwater Wells

Before sampling of groundwater wells began, equipment blanks were collected and analyzed for the contaminants of interest. These blanks permit the correction of analytical results for changes which may occur after sample collection. One set of blanks per day for each contaminant of interest was made up in the field on each day of sampling. The blanks were obtained by using double deionized (DDI) water and subjecting it to the same sampling, filtering, and preservation equipment as a normal sample. The blanks were collected in containers that were triple rinsed with unfiltered (for organic analytes) or filtered (for inorganic analytes) distilled water.

After the well was purged, the samples were obtained immediately. For slow recovering wells, the sample was collected immediately after a sufficient volume was available. The groundwater well samples were collected with a teflon bailer lowered on a teflon coated cable into the well casing. After obtaining the groundwater samples, a second sample was collected for temperature, conductivity, and pH measurements, which were measured in the field.

Samples for Metals Analysis.

Samples for metal analysis were filtered in the field using a 0.45 micron high capacity filter. The sample containers were triple rinsed with filtered sample before obtaining a sample for analysis.

Samples for Organic Analysis.

When sampling water for volatile compounds, extra care was exercised to prevent analyte losses due to volatilization. Precautionary measures included avoiding aeration or agitation of the

sample, taking care that no air bubbles were trapped in the sample vial, and never allowing a volatile sample to freeze.

Surface Water Sampling

Before sampling of surface water, sample containers were sample rinsed, taking care not to disturb sediments at the sampling point. Surface water samples were not filtered. All samples were placed in containers that had been cleaned according to the protocols in the paragraph on Sample Containers. The appropriate preservative was added to the collected sample and the container was capped securely. Sample containers were labeled and logged in the logbook. The sample containers were placed in ice chests immediately after sampling and delivered to the laboratory within accepted holding times. The samples were kept on ice during shipment and stored at 4°C prior to chemical analysis.

Surface Soil Sampling

Surface soils samples were collected from locations representative of site conditions. Discrete samples were collected with a stainless steel scoop, composited, and analyzed.

Prior to sampling, surface vegetation, rocks, pebbles, leaves, twigs, and debris were cleared from the sample location to allow collection of a representative soil sample (Environmental Protection Agency, 1986). The sampling equipment was cleaned before and after collection of each sample. The sampling equipment was thoroughly scrubbed and rinsed with DDI water and then dried with clean paper towels.

All samples were placed in containers that had been cleaned according to the protocols in the paragraph on sample containers. Sample containers were labeled and logged in a logbook. The sample containers were placed in ice chests immediately after sampling and kept on ice during shipment. Samples were delivered to the laboratory within accepted holding times.

Prior to soil sampling, an equipment blank was collected by rinsing the sampling equipment with DDI into the appropriate sample container. The sample containers were triple rinsed with a portion of the blank rinsate before the sample(s) was taken.

Equipment Decontamination

Groundwater,

All equipment used to measure, purge, filter, and sample the groundwater wells was cleaned between each well to prevent cross-contamination between wells. No detergents, soaps, or solvents were used to clean equipment in the field. Clean disposable gloves are worn at all times to eliminate cross-contamination. The equipment decontamination procedure included rinsing with 10% nitric acid solution then thoroughly rinsing with distilled water three times.

Surface Water and Soil.

Equipment used for collecting soil and surface water samples were rinsed thoroughly with DDI. Sometimes scrubbing was required when sediments adhered to sampling equipment. No detergents, soaps, or solvents were used to clean equipment in the field. Clean disposable gloves are worn at all times to eliminate cross-contamination.

Sample Preservation

The purpose of sample preservation is to prevent or retard the degradation/modification of chemicals in water samples during transit and storage. Efforts to preserve the integrity of the samples were initiated at the time of sampling and continued until chemical analysis was completed.

Sample Containers

All sample containers were cleaned. The following steps were taken to minimize contamination from the containers in which the samples were stored. If the analytes were organic, the containers were amber glass bottles. Organic volatile samples were collected in 40 ml glass vials. If the analytes were inorganic, the containers were polyethylene bottles. Containers for soil samples were 40 ml glass vials for volatile organics and 16 oz. wide mouth glass jars for the other priority pollutants. New sample bottles were cleaned according to the procedure presented below; reuse of sample containers was prohibited. Use of commercially certified cleaned containers was allowed if the cleaning procedure complied with that listed below.

- Polyethylene Bottles and Polyethylene Caps
 - a. Rinse bottles and lids with 5% sodium hydroxide.
 - b. Rinse with DDI.
 - g. Rinse with 5% Ultrex nitric acid in deionized water.
 - d. Rinse with DDI.
 - e. Drain and air dry.
- Amber Glass Bottles, Wide Mouth Glass Jars, or 40 ml Glass Vials

- a. Scrub and wash bottles in detergent.
- b. Rinse with copious amounts of DDI.
- c. Rinse with acetone.
- d. Rinse with methylene chloride.
- e. Rinse with hexane.
- f. Air dry.
- g. Heat to 200°C.
- h. Allow to cool.
- i. Cap with clean caps with teflon liners.
- Teflon Liners (avoid contact with fingers)
 - a. Wash with detergent.
 - b. Rinse with DDI.
 - g. Rinse with acetone.
 - d. Rinse with hexane.
 - e. Air dry.
 - f. Heat to 40°C for 2 hours.
 - g. Allow to cool.
 - h. Use to cap cleaned bottles.

The sample containers, including caps, were triple rinsed with sample water, if appropriate. Bottles and caps for filtered samples were rinsed with filtered sample water and bottles and caps for unfiltered samples were rinsed with unfiltered sample water.

Field Measurements

Field Measurements Prior To Purging

There were no positive HNU readings detected in any of the wells.

Water levels and depths to the bottom of the wells were measured and recorded for each well. FTA-M3 was dry during all 3 sample rounds.

Field Measurements After Sampling

Conductivity, pH, and temperature measurements were made immediately after the samples were collected.

Chain of Custody

A chain-of-custody procedure was used to maintain the integrity of the sample after collection. The samples were locked up whenever they were not being attended. After the samples were collected a chain-of-custody sheet was placed inside the ice chests, and chain-of-custody seals were placed on the shipping container.

PART VII: ANALYSIS OF CHEMICAL DATA

Surface-water Samples

Table 7 (Appendix I) contains the compounds detected in the four surface-water samples collected from the AFTA and the guidelines for water for these compounds. A sample was collected from Berm 2, Berm 3, the separation pond associated with Berm 3 and the stream (outfall) leaving the separation pond (Figure 31).

Sources for the guidelines used are the Drinking Water Regulations and Health Advisories (Environmental Protection Agency, 1991) and the Water Quality Criteria established by EPA in 1986 for freshwater and marine aquatic life. Criteria has been established for acute and chronic symptoms. Acute symptoms occur quickly and chronic, occur over time.

Berm 2.

FTASB2 is the sample collected from the water standing in Berm 2 (Figure 32). Cadmium, lead, and benzene exceeded the MCL. The water quality criteria for freshwater and marine aquatic life were exceeded by cadmium, chromium, copper, lead, nickel, silver, and zinc. Oil and grease was detected at 34,763,000 ug/L. Water quality criteria states that "surface waters shall be virtually free from floating nonpetroleum oil of vegetable or animal origin, as well as petroleum derived oils" (Environmental Protection Agency, 1986).

Benzene, toluene and xylenes, contaminants associated with gasoline and fuels, were detected. Only Benzene exceeded an MCL. Concentrations of all three compounds were below the water quality criteria for aquatic life. Phenanthrene and 2-methylnaphthalene, also contaminants associated with fuel or petroleum products, were detected at concentrations of 63,000 ug/l and 140,000 ug/L, respectively.

Methylene chloride, acetone, and 2-hexanone, purgable organics that have many industrial uses as solvents, were detected in FTASB2. Methylene chloride was detected at 480 ug/L, acetone at 110,000 ug/L, and 2-hexanone at 1300 ug/L. Both methylene chloride and acetone are common solvents used in the laboratory for cleaning.

Berm 3.

Sample FTASB3 was collected from the water standing in herm 3 (Figure 33). Samples were also collected from 2 areas adjacent to the herm that contained water, the separation pond (sample FTASB3SP), and the stream leaving the separation pond (sample FTSB3OF).

Cadmium, lead, and benzene exceed the MCL in FTASB3. Cadmium, chromium, copper,

Table 7
Parameters detected in surface water samples at AFTA

						in call and a second			
		SAMPLE ID	(F 10			FRESH WATER O	ERISH WATER QUALITY CRITERIA	MARINE WATER	MARINE WATER QUALITY CRITERIA
PARAMETER	FTASB2	FTASBJ	FTASB3SP FTASB3OF	FTASB30F	MCL	ACUTE	CHRONIC	ACUTE	CHRONIC
Arkme	_	2	7	\$	\$0	850	48	2,300	13 000
Cedmunn	37.1	30.5	9.9	6.2	< \$ >	3.9	=	43	6 6
Съсмич	63	\$4	38 /	13 /	92	16		100	6
Cupper	267	1 554	36 .	30	0.00	81	12	3.0	
642	\$ 077.8	2,530	248	161	\$0	82	1.2	140	6.7
Nickel	19	1 55	13 .	-	< 100 >	1.400	091	37	5.0
Silver	1	*	,	•	SS	1.4	0.12	2.3	6.9
אויס	2.670	2,620	425 /	382	5,000	120	017	\$0	76
Stheon	25,800	45.000	11,600	7,110					8
Numbe Numben	2380	992	372	172	10,000				
Ammona Nimyen	0+1	278	191	226				EXCEED WATER OILAI PEN	Olfal frv
Chemical Oxygen Demand	9,845,000	5.550,000	2,130,000	1,830,000			^ V	PROPOSED MCI	• • • • • • • • • • • • • • • • • • • •
Sulfate	24,400	000'61	13.500	10,400	250,000		BLANK CELL	NO DATA/CRITERIA	
Chloride	26,500	008'61	24,800	20,200	250,000			EXCEEDS MCI	_
Orthophosphate	1,120	2.210	69#	430			NOTE	· All DATA/CD	TCDIA IN
Oil & Gream	4,763,000	11,596,000			_				7/80 11 03011
Methylene Chlonde	480	76	100	391	\$\$\$				
Toluene	3	7.3	360	370	2,000			000.9	000
Benzene	-10	130	250	210	~			3.100	700
Acetone	110,000	95,000	67,000	62,000					
Ethylbenzene			2	18	007	32,000		410	
2-Hexanone	1,300	098	068	1.600					
T-Xylene	70	123	470	470	10,000				0
Phenanthrene	63.0cc	24,000	170	130					
Benzyl Alcohol			076	1,800					
2 Metnylnaphthalene	000'0+1	000.001							
Total DDT		11	48	24 .		1.1	0.001	0.13	1000
Endosulfan II		3.3				0.22	0.056	71.0	0.001
Total Organic Carbon				768,000					0.0
Heptachlor Epoxide				0.14	0.2				

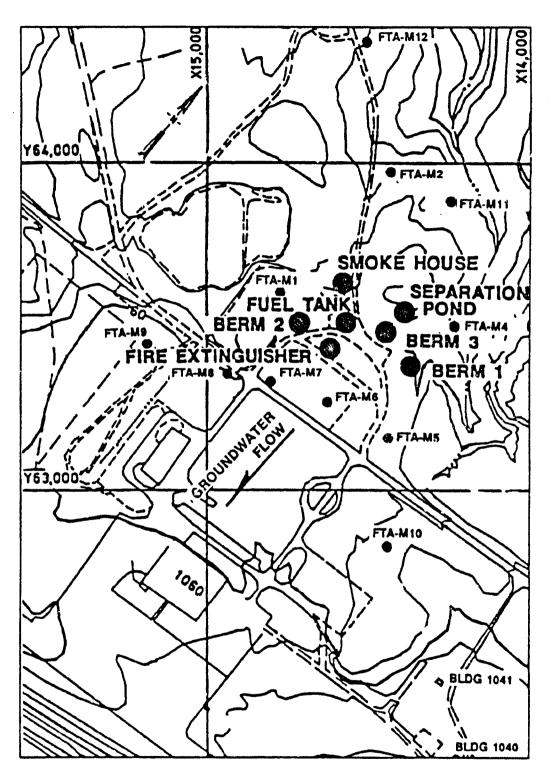


Figure 31. AFTA site map.

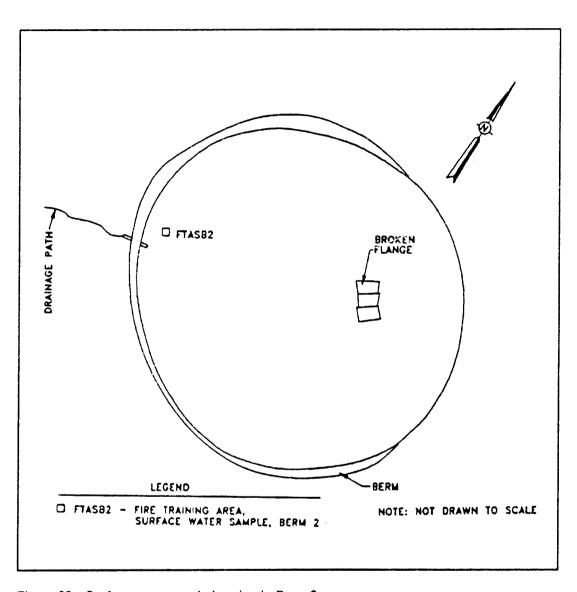


Figure 32. Surface water sample location in Berm 2.

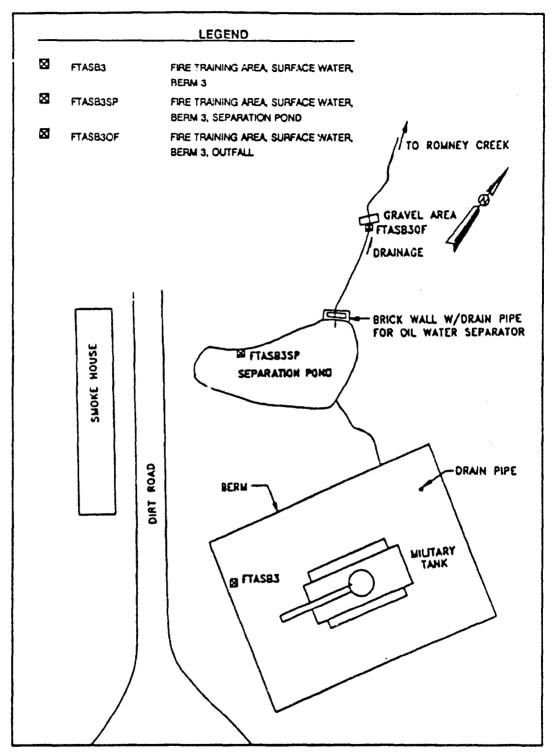


Figure 33. Surface water sample locations in Berm 3, its drainage path, the separation pond, and the outfall area

lead, nickel, silver, zinc, total DDT, and Endosulfan II in FTASB3 exceed the water quality criteria. Cadmium was detected at 30.5 ug/L. This concentration exceeds the MCL and the water quality criteria, except for the marine acute criteria. Lead (2530 ug/L) exceeds the MCL and water quality criteria. The concentrations of copper (455 ug/L) and zinc (2620 ug/L) do not exceed the MCL, but they do exceed all water quality criteria established for aquatic life protection. Chromium was detected at 54 ug/L, which exceeds the acute and chronic freshwater aquatic life criteria.

The oil and grease concentration in Berm 3 was 11,596,000 ug/L. As noted above, surface waters are to be free of oils, both petroleum and non-petroleum, animal and vegetable.

The concentration of benzene, 130 ug/L exceeds the MCL for this compound. Concentrations of toluene and total xylenes are 73 ug/L and 123 ug/L, respectively. These concentrations, including benzene, do not exceed any water quality criteria. Concentrations of other components of fuel are 24,000 ug/L of phenanthrene and 100,000 ug/L of 2-methylnaphthalene. Solvents detected in FTASB3 are methylene chloride, acetone and 2-hexanone. Methylene chloride was detected at 76 ug/L; acetone, 95,000 ug/L, and 2-hexanone, 860 ug/L. Both methylene chloride and acetone are common solvents used in the laboratory for cleaning.

The total DDT and Endosulfan II detected in FTASB3 were 11 ug/L and 3.3 ug/L, respectively. MCLs have not been established for these pesticides. The total DDT and Endosulfan II exceed the water quality criteria.

The concentrations of cadmium and lead in the water samples collected from the areas adjacent to Berm 3, FTASB3SP and FTASB3OF, exceed the MCLs and water quality criteria. The concentration of lead in FTASB3SP (249 ug/L) and FTAB3OF (193 ug/L) exceed the MCLs and the fresh and marine water quality criteria. The concentration of cadmium in FTASB3SP (6.6 ug/L) and FTASB3OF (6.2 ug/L) exceed the MCLs, but only exceed the acute fresh water quality criteria (3.9 ug/L).

The components of fuel detected in these samples are benzene, toluene, total xylenes, ethylbenzene and phenanthrene. Concentrations of benzene in FTASB3SP (200 ug/L) and FTASB3OF (210 ug/L) exceed the MCL (5 ug/L). No water quality criteria for fuel components were exceeded.

Solvents detected in FTASB3SP and FTASB3OF include methylene chloride (100 and 160 ug/L, respectively), 2-hexanone (890 and 1600 ug/L, respectively), acetone (67,000 and 62,000 ug/L, respectively) and benzyl alcohol (920 and 1800 ug/L, respectively). Methyl chloride exceeds the MCL of 5 ug/L. Methylene chloride and acetone are common solvents used in the laboratory.

Soil Gas Survey

A soil gas survey was conducted from March to July 1989 with a final report (Appendix J) being submitted in August 1989 by the U.S. Army Corps of Engineers, Baltimore District (Stefano, J. E., 1989). A grid of 9 rows and 9 columns (81 points) was used to cover an 800-foot by 800-foot area that centers on Berms 2 and 3 where the majority of the exercises took place (Figure 34). Samples were collected at four different depths at six sample points in the center of the area to determine the depth that would be the best representative depth of contamination. Samples were drawn from depths of 3 feet, 5 feet, 7 feet and 9 feet at each point. The maximum contamination was detected at a depth of 5 feet, which was then used as the depth of the survey. After completion of the 81-point grid, additional sample points were added in areas where contaminants had been identified. A total of 176 points were sampled.

The sampling procedure involved driving stainless steel tubing, with a stainless steel carriage bolt in the tip, into the ground. After the tubing was at the desired sample depth, it was pulled back approximately 4 inches, allowing the carriage bolt to drop out of the tip, exposing the probe to a small void in the soil. A stainless steel sampling manifold was then attached to the surface end of the probe. The sampling manifold has a nipple for attaching a vacuum line on one side and a septum port on the opposite. The vacuum pump was attached to the sampling manifold and the system was pumped 3 to 5 minutes. The volume of subsurface vapors being collected was monitored using a valve and vacuum gage within the system. The sample was then collected through the septum port using a gas tight syringe. A Photovac 10S70 Gas Chromatograph (GC) was used on site to analyze the samples. The vapor standard used to calibrate the Photovac was a blend containing seven compounds including benzene, toluene and o-xylene.

QA/QC required that sampling probes be steam cleaned after every use and after every six samples the entire system be disassembled and steam cleaned. The teflon tubing used to attach the vacuum pump was changed periodically or whenever signs of visible contamination was observed.

Results of the soil gas survey showed concentrations of benzene ranging from undetected to 6.85 ppm. Toluene concentrations ranged from <0.01 ppm to 7.55 ppm and o-xylene concentrations ranged from undetected ppm to 0.85 ppm (USACE, 1989). The total concentrations of benzene, toluene and o-xylene are shown in Figure 35. The total number of ionizables that were detected are shown in Figure 36. Ionizables are those compounds detected by the Photovac 10S70 Gas Chromatograph but not defined and quantified.

The higher levels of soil vapor contaminants were adjacent to the burn pits and to the south-

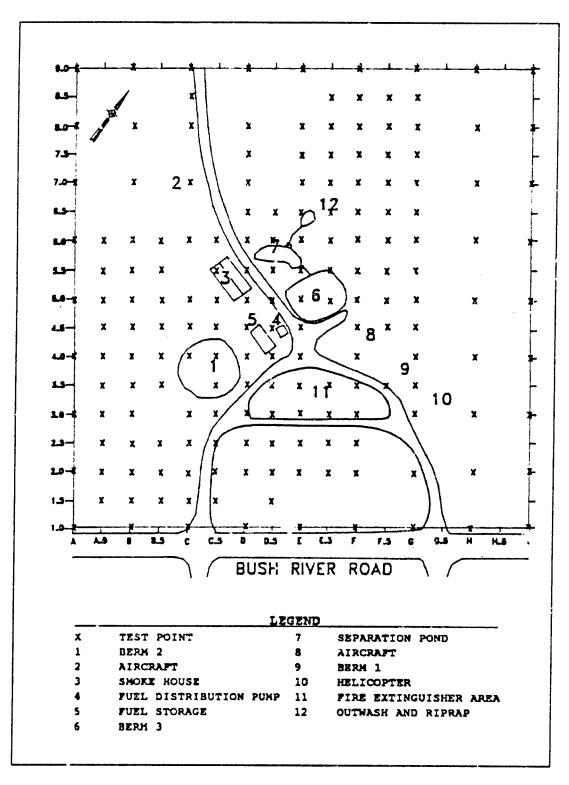


Figure 34. Grid for soil gas survey.

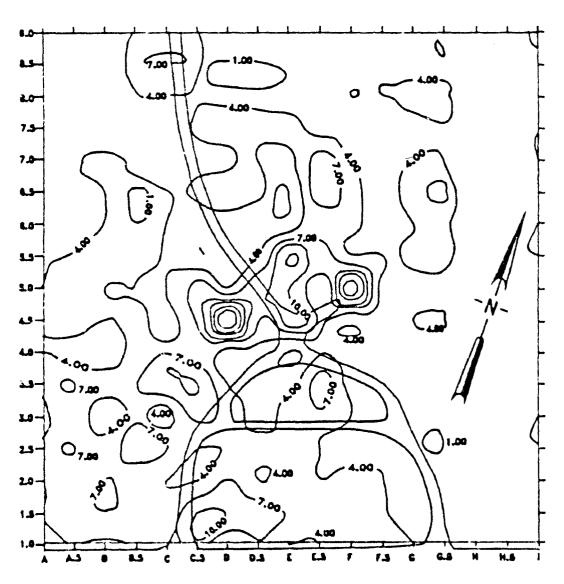


Figure 35. Total benzene, toluene and o-xylene (BTX) in mg/L passing the detector.

Grid columns and rows are labeled.

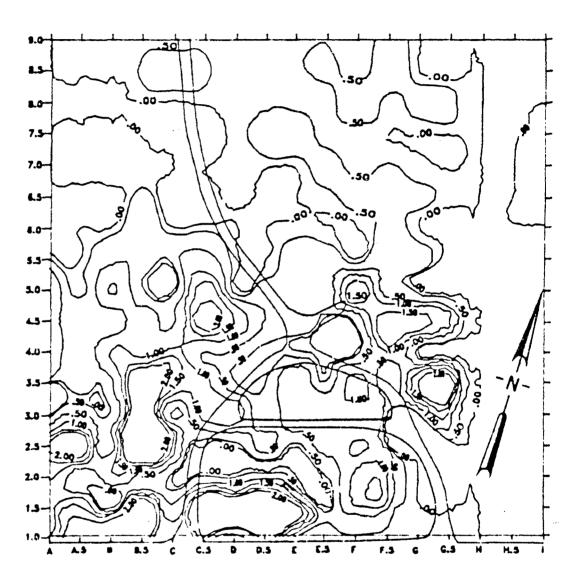


Figure 36. Total ionizables in mg/L passing the detector. Grid columns and rows are labeled.

southeast between the pits and Bush River Road. "Changes in the amount of soil moisture and ambient temperature over the duration of the field work may have affected the results" (USACE, 1989). Contaminants appear to be moving in a southern direction with the regional groundwater flow; however the vertical profiling did not show an increase with depth, that is expected with contaminant movement with groundwater. "This indicates that site geology has the most significant influence on the movement of contaminants at this site" (USACE, 1989).

Soil Samples

At this time no standards exist for maximum allowable concentrations of contaminants in soils; each site is typically reviewed on a site-by-site basis. Guidelines used in this report are from several different sources. Guidelines for metals and natural elements are the values given as the upper range for the elements naturally occurring in soil (Shields, 1990). Guidelines for organic constituents detected are the new toxicity characteristic (TC) regulations (Environmental Reporter, 1990). This value characterizes wastes based on its toxicity. The guideline for PCBs is a 10 ppm action level issued to APG under the Toxic Substance Control Act (TSCA). The guideline for total DDT is 1 ppm as issued by the State of Maryland in 1980 for the DDT spill site near Building 450.

Twenty-one surficial soil samples were collected from the site for this study. Analysis of the soil samples (Table 8 and Appendix K) indicates the presence of metals, hydrocarbons, and volatile organic compounds.

Berna 1

There are no visible signs of ground surface contamination in this berm. Two soil samples, FTAB11 and FTAB12, were collected from Berm 1 (Figure 37). Both samples contained methylene chloride at 0.042 mg/Kg and 0.038 mg/Kg, respectively. The cadmium concentration in FTAB11 (17.30 mg/Kg) exceeds the guideline of 7.0 mg/Kg used in this report. Lead in sample FTAB11 (352.0 mg/Kg) exceeds the guideline. The zinc content of FTAB11 (299.0 mg/KG) is just under the guideline of 300 mg/Kg used for this report.

Berm 2

Figure 38 shows were the four soil samples were collected from the visible areas of contamination in Berm 2. No metals were detected above the guidelines used in this report. Tetrachloroethene was detected in sample FTAB24 (6.0 mg/Kg). Methylene chloride was detected in two of the samples, FTAB21 (0.15 mg/Kg) and FTAB22 (0.069 mg/Kg). Methylene chloride is an industrial solvent with many uses and may have been introduced in the laboratory. Total xylenes

Table 8 (continued)

Parameters detected in the soil samples at the AFFA (page 1 of 3)

PARAMETER Arsenic Beryllium Cadmium Chromium Copper Lead	FTAB11 6 1.4 17.3 # 28 74.4	FTAB12 4.49 1.3 6.49	50 FTAB21 3.09 1.2 0.629	2.49	FID with di FTAECS 3.1	FTAR24	FTAB2DD1 4.69	GUIDELINE (mg/Kg)
Arsenic Beryllium Cadmium Chromium Copper	6 1.4 17.3 # 28 74.4	4.49 1.3 6.49	3.09	2.49				
Beryllium Cadmium Chromium Copper	1.4 17.3 # 28 74.4	1.3 6.49	1.2		3.1	5.39	. 4 60 '	
Cadmium Chromium Copper	17.3 # 28 74.4	6.49		11				
Chromium Copper	28 74.4		0.629		1	1.8	1.4	40
Copper	74.4	23		0.699	0.76	0.327	0.788	7
			16.7	17.7	15.8	24.5	16.4	3000
Lead		38.2	13.1	13.1	10.5	12.1	14.1	100
	352 /	126	96.5	165	96.3	34.8	109	200
Mercury								0.8
Nickel	26.7	16.6	10.6	11.5	8.3	13.7	9.58	1000
Silver	0.2		0.299					5
Zinc	299	138	64.7	71	53.6	35.1	64.3	300
Silicon	25.8	25.9	31.8	24.9	31	43.3	23.9	-
Meshylene Chloride	0.042	0.038	0.15	0.069			-	-
Total DDT	0.0352	0.0153	-	0.0232			0.0007	1
PCB-1248		0.003		_				10
PCB-1260	0.34	0.34		0.28			0.1	10
Heptachlor	_	0.001		—			_	_
Phenasthrens			2	_	_			-
T-Xylens				_	33	90	****	_
Trichlorostheas	_		_					_
Tetrachloroethens				-		6.0 #	-	0.7
Toluene		_				27		-
Beazens			_	_				-
Pyrene			-					_
Acetone			-	-				-
Ethysbenzene	_		_		-	20		-
₽-BHC	_	_						-
▶ BHC				_				
4-BHC	_				0.0093			_
g-BHC				-				-
Fluorene								-
Chrysens							_	-
Benzo(b) flurasthens					_			-
Benzo(e)pyrene	_			_				-
2-Methylnaphthalens	_							
Pluoreuthens								+
Dibutylphthalate	_							**
Bia(2-ethythexyf)phthalate				_	_			**
Di-n-octylphthelete								-
Endria								-
Endonulian II								
Aldrin								
- Balow Detection Limit	-	indicates Gu	ideline not ex	restats to	/ exc	eds Guideli	ne	

Table 8 (continued)

Parameters detected in soil samples at the AFTA (page 2 of 3)

					h data in me	YG		GUIDELINE
PARAMETER	FTAB2DD2	FTAB31	FTAB32	FTAB33	FTAB34	FTAABIDD	FTAB3SP1	(mg/Kg)
Amenic	4.9	2.39	1.9	3.4	1.9	2.2	3.09	40
Berytlium	1.2	0.798	0.7	1	0.899	0.999	1.3	40
Cadmium	4.7	2	0.84	0.4	4.49	3.26	1.27	7
Chromium	32	28.7	16.2	16.4	33.1	27.9	31.1	3000
Copper	25	36.4	11	9.2	74.4	30.9	17.1	100
Lead	136	277	254	51.1	503 #	237 #	192	200
Mercury	0.652	_			_			0.8
Nickel	41.8	19	8.9	9.2	18.2	12.5	10.4	1000
Silver	0.1	0.1	0.6	0.9	4.19	4.5	0.1	5
Ziec	128	409 /	92.7	54.1	648 #	140	103	300
Silicon	34.9	28.1	26.5	26.9	22.1	28.8	27.6	
Methylene Chloride	0.42	0.35	0.11		5.2	14	0.059	
Total DDT	0.231	0.58	0.273	0.29	0.03	1.495 #	0.58	1
PCB-1248	_	-	_		_	17		10
PCB-1260	0.32	4.3	0.94	0.57	_		·	10
Heptachlor	_		_	_				-
Phosenthrene		-			63			-
T-Xylens		_		51	4.8	25		-
Trichloroethens		_	_		3.5			
Tetrachiometheae	_	0.28	_		3.8 /			0.7
Toluene		_	_	18	5.7			-
Beszens	_		_	-	1.7	-	-	-
Ругосы			_		6.2			-
Acetone	_	_			_		1 \$	4
Eth y ibenzage			-	7	4.8	8.2	-	-
e-BHC	0.0005	_				_		-
b-BHC			_			-	0.0047	-
d -BHC			-					-
g-BHC			0.005	10.0048			0.0034	-
Pluorene					17			-
Chrysens				_	11		****	-
Benzo(b) flurantiene					10			-
Восго(а)р утова					6			•
2-Methylnephthainns					39			-
Fluoreathens								-
Dibutylphthelate								-
Bio(2-othythexyf)phthalete								
Di-e-octylphthalete								**
Endria	_							
Endomifan II			0.034					-
Aldrin				0.0009			•	
- Below Detection Limit		indicates G	uideline not	evailable	,	xceeds Guidelin	•	

Table 8 (concluded)

Parameters detected in soil samples at the AFTA (page 3 of 3)

	arameters t				us in mg/KG		<u> </u>	GUIDELINE
PARAMETER	FTAB3SP2	FTAB30F	,		4	1	FTAFE2	(mg/Kg)
Amenic	2.4	2.1	1.9	0.299	2.8	10.2	3.59	40
Beryllium	0.898	0.799	0.628	0.277	1.3	1.3	0.799	40
Cadmium	1.33	3.31	0.768	1.23	0.27	5.94	7.81	7
Chromium	21.4	6.29	11	6.69	14.4	69	26.1	3000
Copper	17.9	13.4	6.18	52.5	9.48	32.8	28.6	100
Lead	269.0	18	32.2	15	59.7	301.0	244.0 #	200
Mercury	207.0	10	32.2		37.7	301.0	0.804	0.8
Nickel	9.48	5.69	10.7	7.59	13.3	352	21.6	1000
Silver	0.1	0.1	10.7	7.59	0.2	1.5	25.5	5
Zinc			146	116	140			
	123	21.9	146	136		381.0	234	300
Silicon	39.6	19.4	23.2	34.2	26.8	18.3	35.4	-
Methylene Chloride	0.06		0.55	0.1		0.076	0.059	-
Total DDT	0.588	0.0019	0.004	0.0053	0.024	0.19	0.153	1
PCB-1248								10
PCB-1260						0.38	0.079	10
Heptachlor		0.005					0.0014	
Phenanthrene			0.06					-
T-Xylene		-						_
Trichloroethene								
Tetrachloroethene			_					0.7
Toluene								
Benzene								
Рутеле			0.32					
Acetone	1.2	2.9	1. <i>i</i>					
Ethylbenzene								-
a-BHC		-				0 0005		-
ь-внс				_	0 0054			-
4-BHC	and the same							-
g-BHC			0.~ 4					-
Fluorene							_	_
Chrysene			0 09					
Beazo(h) flurunthens			0.56					
Benzo(a)pyrene		0.09	0.4					-
2-Methylnaphthaicne	_	0.08	0.04					
Fluorenthene			0.54					****
Dibutylphthalate			0.24	0.41	****			
Bis(2-ethythexyl)phthalate			0.37	0.69				
Di-n-octylphthalate			0.2					-
Endrin						0.083		
Endomilien II								
Aldna						0.0009		
Below Detection Limit	-	indicates Ouis	leline not ev	eilable	f exc	eeds Guidel	ine	

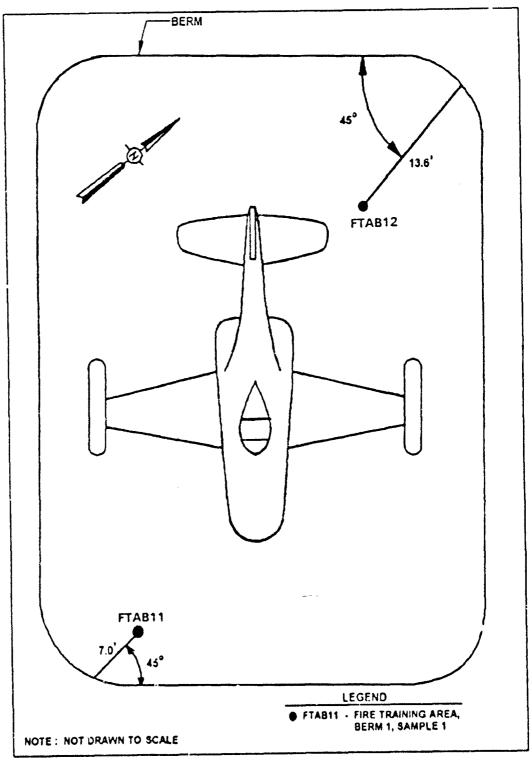


Figure 37. Soil sample locations in Berm 1.

were detected in FTAB23 and FTAB24 at 33.0 mg/Kg and 90.0 mg/Kg, respectively. Toluene (27.0 mg/Kg) and ethylbenzene (20.0 mg/Kg) were detected in FTAB24. Phenanthrene, a breakdown component of fuel, was detected in FTAB21 at 2.0 mg/Kg.

Two samples, FTAB2DD1 and FTAB2DD2, were collected along the drainage path (Figure 38) that leads from Berm 2. Methylene chloride was detected in FTAB2DD2 at 0.42 mg/Kg. No other organic compounds were detected. The metals detected in both samples were below guidelines. Berm 3

Four soil samples were collected from Berm 3 (Figure 39). Lead was detected in three samples, FTAB31 (277.0 mg/Kg), FTAB32 (254.0 mg/Kg), and FTAB34 (503.0 mg/Kg), above the 200 mg/Kg guideline. The zinc content in FTAB31 (409.0 mg/Kg) and FTAB34 (648.0 mg/Kg) exceed the natural soil guideline of 300 mg/Kg. Purgable organic compounds detected include: methylene chloride, tetrachloroethene and trichloroethene. Methylene chloride was detected in three samples, FTAB31 (0.35 mg/Kg), FTAB32 (0.11 mg/Kg) and FTAB34 (5.2 mg/Kg). Trichloroethene (TCE) was detected in FTAB34 at 3.5 mg/Kg. Tetrachloroethene was detected in two of the samples, FTAB31 (0.28 mg/Kg) and FTAB34 (3.8 mg/Kg), the latter exceeding guidelines.

Parameters detected in the samples that are associated with fuel contamination include: benzene, toluene, xylene, ethylbenzene, benzo(b)fluoranthene, benzo(a)pyrene, phenanthrene and 2-methylnaphthalene. These compounds were detected in two samples, FTAB33 and FTAB34. These two samples are from the low area of the berm that collects the water before it moves into the separation pond. Total xylenes in samples FTAB33 and FTAB34 were 51.0 mg/Kg and 4.8 mg/Kg, respectively, and toluene were 18.0 mg/Kg and 5.7 mg/Kg, respectively. Ethylbenzene was detected in FTAB33 and FTAB34 at 7.0 mg/Kg and 4.8 mg/Kg, respectively. Benzene (1.7 mg/Kg), phenanthrene (63.0 mg/Kg), benzo(a)fluoranthene (10.0 mg/Kg), benzo(a)pyrene (6.0 mg/Kg), and 2-methylnaphthalene (39.0 mg/Kg) were detected only in FTAB34.

One sample, FTAB3DD, was collected from the drainage path between Berm 3 and the separation pond (Figure 39). The lead (237.0 mg/Kg), total DDT (1.497 mg/Kg) and PCB-1248 (17.0 mg/Kg) were above the guideline of 200.0 mg/Kg, 1.0 mg/Kg and 10 mg/Kg, respectively. Methylene chloride was detected at 14.0 mg/Kg. Total xylenes (25 mg/Kg), toluene (17.0 mg/Kg) and ethylbenzene (8.2 mg/Kg) were also detected in FTAB3DD.

Two samples (FTAB3SP1 and FTAB3SP2) were collected from the separation pond (Figure 39). The lead content in FTAB3SP2 (269 mg/Kg) exceeded the guideline of 200 mg/Kg and FTAB3SP1 contained 192 mg/Kg of lead. Methylene chloride (0.06 mg/Kg in both samples) and acetone (1.8 mg/Kg and 1.2 mg/Kg) were detected in FTAB3SP1 and FTAB3SP2, respectively.

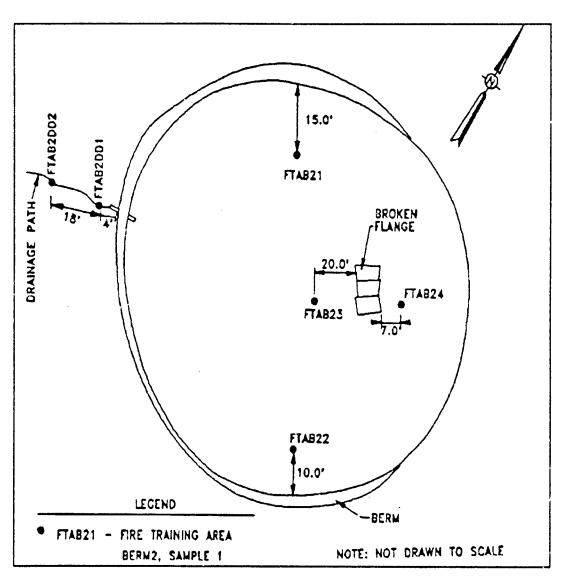


Figure 38. Soil sample locations in Berm 2 and its drainage path.

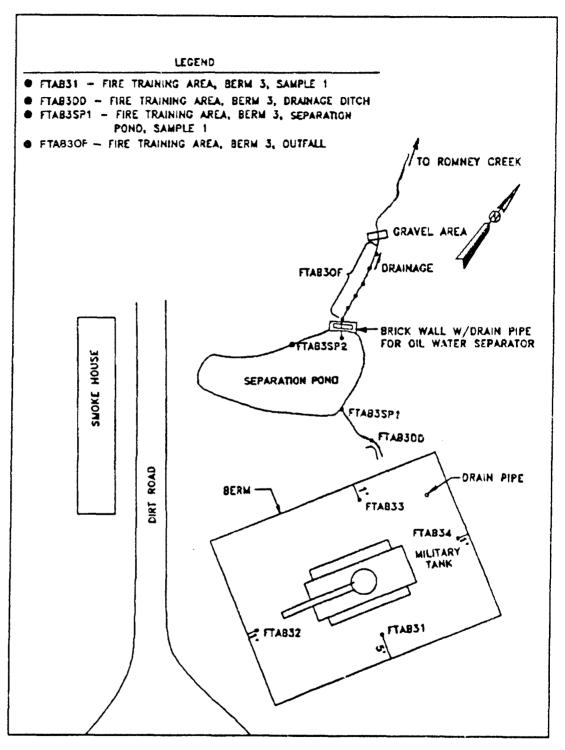


Figure 39. Soil sample locations in Berm 3, its drainage path, the separation pond and the outfall area.

A composite sample, FTAB3OF, was collected along the creek leading out of the separation pond to Romney Creek (Figure 39). Acetone (2.9 mg/Kg), benzo(a)pyrene (0.09 mg/Kg) and 2-methylnaphthalene (0.08 mg/Kg) were detected in the sediments. Benzo(a)pyrene and 2-methylnaphthalene are breakdown components of fuel.

Old Smoke House

Figure 40 shows the location of composite sample FTASH2 which was collected from inside the Old Smoke House and composite samples FTASH1 and FTASH3 which were collected outside the Old Smoke House. No metals or organics were detected above the guidelines used for this report. Organics detected included: methylene chloride, phenanthrene, fluoranthene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, 2-methylnaphthalene, acetone, dibutylphthalate, bis(2-ethylhexyl)phthalate, di-n-octylphthalate.

Methylene chloride was detected in FTASH1 (0.55 mg/Kg) and FTASH2 (0.1 mg/Kg). Other compounds detected in FTASH1 and FTASH2 were dibutylphthalate (0.24 mg/Kg and 0.41 mg/Kg, respectively), and bis(2-ethylhexyl)phthalate (0.37 mg/Kg and 0.69 mg/Kg, respectively). Di-n-octylphthalate and acetone were detected in FTASH1 at 0.2 mg/Kg and 1.1 mg/Kg. The phthalates are common laboratory contaminants. Methylene chloride and acetone are common industrial solvents with many uses and may have been introduced in the laboratory. Other organic compounds detected in FTASH1 are breakdown components of fuels or petroleum products. Fire Extinguisher Practice Area.

Two samples (FTAFE1 and FTAFE2) were collected from the Fire Extinguisher Practice area (Figure 41). Lead, zinc, cadmium, mercury and silver exceeded the guideline at the Fire Extinguisher area. The concentrations detected which exceeded guidelines in the 2 samples are listed below in mg/Kg:

PARAMETER	ETAFE1	FTAFE2	GUIDELINE
Lead	301	244	200
Zinc	381	234	300
Cadmium	5.94	7.81	7
Mercury	•••	0.804	0.8
Silver	1.5	25.5	5

Methylene chloride was detected in FTAFE1 and FTAFE2 (0 076 mg/Kg and 0.059 mg/Kg, respectively).

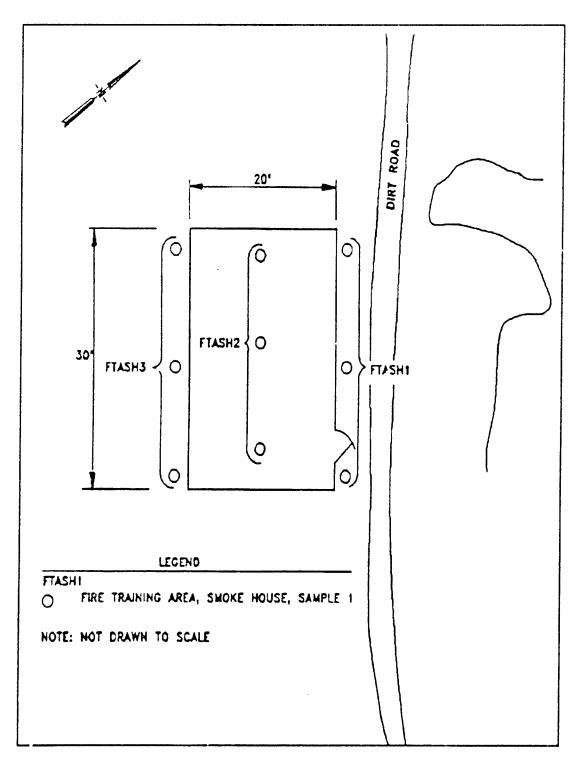


Figure 40. Soil sample locations at the Old Smoke House.

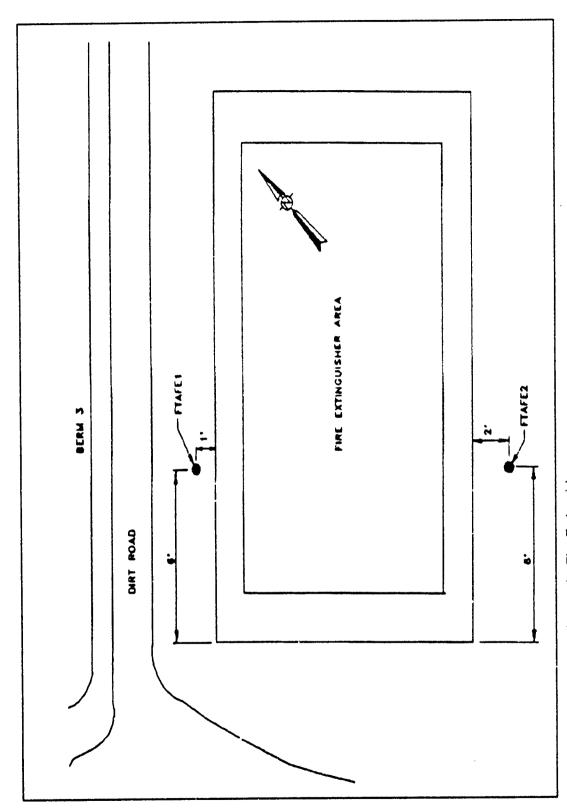


Figure 41. Soil sample locations at the Fire Extinguisher area.

Underground Storage Tank

A sample of the contents of the underground storage tank (UST) was collected and analyzed. The sample separated into two distinct phases (water and oil) in the sample bottles. The two phases were separated in the laboratory and analyzed (Appendix L). A phase from the oil/water contact was also analyzed (Table 9). The sample contained a mixture of hydrocarbons with carbon chains ranging from C9 to C25 and low volatiles with carbon chains less than C9. The contents were identified as an aged diesel fuel or gasoline. Table 9 shows the parameters and their toxicity characteristic. As previously noted the UST was removed in 1990. A monitoring well has been installed where the UST was removed.

Groundwater Samples

Three rounds of samples were collected from 11 of the 12 AFTA groundwater monitor wells and 2 former standby production wells, 1040 and 1041. Well FTA-M3 was dry. Production wells 1040 and 1041 are not in use; the pumps have been removed. The samples were collected in February, May and July 1990 (Sample Rounds 1, 2 and 3, respectively). The results of these analysis are given in Appendices M, N and O. Table 10 is a summary of all the chemical parameters above the detection limit and the indicator parameters (pH, conductivity, and temperature). The guidelines listed in Table 10 are from the "Drinking Water Regulations and Health Advisories" by the Office of Drinking Water, USEPA, November 1996 (updated January 1991).

Background Levels for Commonly Reported Parameters

Background levels for the more commonly reported parameters were established using data from the USGS Water Resources Data Maryland and Delaware Water Year 1987 Report MD-DE-87-1 (James, et al., 1987) and Water Year 1988 Report MD-DE-88-1 (James, et al., 1988) and the Maryland Geological Survey Water Resources Data Report No. 7, 1975 (Nutter and Smigaj, 1975). The data from 11 wells screened in the Talbot Formation were used to establish the background levels (Table 11). All 11 of the background wells are located in the DE quadrangle of the Maryland Geological Survey Report No. 7 (Nutter and Smigaj, 1975) up-gradient of AA-APG (Figure 42).

Table 12 shows the comparison between the data from the 3 rounds of groundwater samples at the AFTA and the background levels. The calcium, magnesium and sodium values at the AFTA fell within the general range of background wells. No MCL or SMCL guidelines have been established for calcium, magnesium or sodium.

Table 9
Parameters detected in UST at AFTA

		CONCENTRATION	EP TOXICITY
		DETECTED	CHARACTERISTIC
SAMPLE TYPE	PARAMETER	in ug/L	in ug/L
WATER LAYER	Antimony	64	
WATER LATER	Cadmium	187	1000
-	Chromium	62	5000
	Copper	2,660	3000
-	Lead	182	5000
-	Mercury	0.5	200
Ļ	Nickel	491	200
}	Silicon	3,630	
<u> </u>	Silver	0.1	5000
-	Thallium	4	3000
	+ Zinc		**
		5,440	
-	Orthophosphate	1,570	**
-	Ammonia Nitrogen	10,700	
-	Nitrate Nitrogen	31,000	
<u> </u>	Chemical Oxygen Demand Oil & Grease	310,000,000	
* **	Phenol	27,430	
	2-Methylphenol	2,300	
<u> </u>	Benzyl Alcohol		**
	Dimethyl Phthalate	3,000 370	
		·	••
<u>}</u>	Naphthalene Phenanthrene	2300 730	**
-	2-Methylnaphthalene	 	••
OIL LAYER	Oil & Grease	6300	**
OILLATER	Aldrin	1,133,300,000	
}	Heptachlor Epoxide	20	8
}	Fluorene	<u></u>	
}		175,000	
	- Diethylphthalate	214,000	
}-	Naphthalene	1340,000	**
}-	Phenanthrene 2 Matheleanthrene	338,000	••
OIL OWATED LAVED	2-Methylnaphthalene	3470,000	
OIL/WATER LAYER	Toluene	4,700,000	
}	Ethylbenzene	1,700,000	
	T-Xylene	8,300,000	·•
	 indicates EP Toxicity Charac 	teristic not available	

Table 10 (continued)

Parameters above the detection limit in groundwater samples at the AFTA in Sample Rounds

1 (February 1990), 2 (May 1990), and 3 (July 1990) (page 1 of 5)

	SA	FTA-M1 MPLE RO			FTA-M2 MPLE ROU		SA	FTA-M-		
PARAMETER	1	2	3	1	2	3 ·	ı	2	3	
Barium	NA	23.5		NA	34		NA	54.5	55	
Cadmium				_	_	_		-		
Calcium	NA	8,880	11,800	NA	2,467	4,770	NA	2,900	4,960	
Chromium	-					-		_	26	
Copper		_			11.2			12.2	-	
Iron	NA	# 560	231	NA	# 374	_	NA	224	# 5,240	
Lead	_	_	_	_	-	46	_	_	_	
Magnesium	NA	2,470	2,700	NA	2,631	3,700	NA	2,320	4,030	
Manganese	NA	15.5	—	NA	43	_	NA	14	# 192	
Nickel		_	-	-	_	_			_	
Potassium	NA	896	1,480	NA	518	828	NA	4,480	6,750	
Selenium		1.6	-		1.7			1.1		
Silica	NA	1,080	897	NA	*1,490	1,840	NA	2,054	4,590	
Sodium	NA	8,460	9,830	NA	2,040	3,190	NA	3,484	4,390	
Zinc	19.2		192	23.5	41.8		20	18.5	_	
Conductivity	85	120	98	48	50	45	65	95	80	
рК	# 5.26	# 5.18	# 6.01	# 4.61	# 5.30	# 4.74	# 5.94.	# 5.00	# 5.99	
Temperature	13.2	11.5	17.9	13	12.4	22	12	13.4	17.9	
Chloride	NA	15,400	11,400	NA		2,040	NA	5,840	8,240	
Sulfate	NA	34,600	28,100	NA	15,900	19,700	NA	6,370	19,500	
TDS	NA	94,000	144,000	NA	54,000	114,000	NA	76,000	128,000	
Nitrates	NA	4,200	1,460	NA	280	350	NA	1,700	2,330	
Ammonia Nitrogen	NA	300		NA	270		NA	31,000		
Oil & Grease	NA	4,000		NA	3,000		NA	4,000		
Orthophosphate	NA			NA			NA			
Phenois						5.3			9.2	
Bis(2-ethylhexyl)phthalate	47			34			58			
Tetrachloroethene										
Toluene		-			-					
7richloroethene										
1 ,1 ,1-Trichloroethane					-					
1 ,1-Dichloroethane										
1 ,1-Dichloroethene										
1 ,2-Dichloroethane]							
above MCL # exceeds secondary MCL NA not analyzed for	•	Below Detection Limit All data are in ug/L, except conductivity in umhos								

Table 10 (continued)

Parameters above the detection limit in groundwater samples at the AFTA in Sample Rounds

1(February 1990), 2 (May 1990), and 3 (July 1990) (page 2 of 5)

	SA	FTA-M5 MPLE ROU	ND	s	FTA-M6 AMPLE ROU	JND	SA	FTA-M7	
PARAMETER	1	2	3	1	2	3	1	2	3
Barium	NA	*32.2	_	NA	46.8		NA	28.2	34
C∎dmium		_			_		_		_
Calcium	NA	1,847	2,680	NA	3,130	4,560	NA	1,540	2,830
Chromium		_							51
Copper					12.7	-		18	_
Iron	NA	# *313	39	NA	# 969		NA	# 384	# 21,4
Lead	***	_					_		32
Magnesium	NA	1,490	1,880	NA	2,620	3,590	NA	1,430	2,81
Manganese	NA	# •66.2		NA	# 213	# 228	NA	# 416	# 1,1
Nickel	32.8	*19 8		144	68	41	32.5	49.5	32
Potassium	NA	4,480	816	NA	1,250	1,480	NA	671	2,00
Selenium		_		_	1		_	_	
Silica	NA	2,170	2,070	NA	2,340	2,820	NA	2,390	11,20
Sodium	NA	4,230	5,000	NA	4,780	6,350	NA	4,520	6,60
Zinc	7.75	*30.5		17.5	137		30.8	36.2	_
Conductivity	42	57	45	33	50	40	33	45	30
рН	# 5.73	# 4.52	# 4.97	# 4.99	# 5.22	# 5.01	# 4.77	# 4.87	# 5.
Temperature	14	14.8	18.9	13.4	13.7	24.9	14	13.1	19.5
Chloride	NA	6,650	8,940	NA	11,100	13,340	NA	4,850	8,26
Sulfate	NA	2,240	4,350	NA	6,370	8,130	NA	1,650	2,86
TDS	NA	46,000	60,000	NA	•86,000	98,000	NA	62,000	94,00
Nitrates	NA	1,000	1,420	NA	2,360	2,080	NA	1,400	1,37
Ammonia Nitrogen	NA	300		NA	100		NA	110	
Oil & Grease	NA	5,000	7,200	NA	6,000	***	NA	4,000	
Orthophosphate	NA			NA			NA	320	
Phenois			6.6			6.9			37
Bis(2-ethythexyl)phthalate	46			56					
Tetrachloroethene					_		11.7	44	•10
Toluene	***		_						9.7
Trichloroethene				223	170	162	87.5	219	•62
1 ,1 ,1-Trichloroethane		_	_	19	9.7	5.8	55.1	119	-
1 ,1-Dichloroethane		_					8.6	11.9	_
1 ,1-Dichloroethene				6	_			31.6	•6.
1, 2-Dichloroethane						***			
above MCL exceeds secondary MCL not analyzed for	•		etection Lin samples (h		All data are	in ug/L, exc	pH in s	tivity in un pH units rature in * t	

Table 10 (continued)

Parameters above the detection limit in groundwater samples at the AFTA in Sample Rounds

1 (February 1990), 2 (May 1990), and 3 (July 1990) (page 3 of 5)

	SA	FTA-M8 MPLE RO	UND		FTA-M9	UND	s,	FTA-MI	
PARAMETER	1	2	3	1	2	3	1	2	3
Barium	NA	48.5	17	NA	73.5	153	NA	24.2	
Cadmium	_				-				
Calcium	NA	2,950	4,050	NA	4,600	8,020	NA	*1540	2,490
Chromium	_	_	_		 		_		
Copper	_	16		_	_		_	12.2	
Iron	NA	# 630	#12,700	NA	e 371	# 23,300	NA	102	# 23,200
Lead	 			_		-	_	_	
Magnesium	NA	2,350	3,280	NA	3,580	6,410	NA	•740	1,990
Manganese	NA	# 113	# 1,360	NA	# 192	# 722	NA	26.5	# 274
Nickel		17.8		28.2	32.2	40			22
Potassium	NA	1,080	1,660	NA.	1,300	3,150	NA	+585	2,060
Selenium		1.1		-	_				
Silica	NA	2,120	5,310	NA	1740	8,620	NA	2160	9,420
Sodium	NA	5,29G	5,850	NA	10,800	6,410	NA	*4200	6,890
Zinc	19.8	56		26	23		13.2	21.2	
Conductivity	50	71	58	83	210	150	25	45	32
рН	# 4.62	# 4.58	# 4.75	# 5.45	# 4.99	# 4.69	# 6.27	# 5.00	# 5.05
Temperature	14.1	16.1	20.5	13.8	18.4	21.7	13.3	13.8	20.7
Chloride	NA	8,840	11,400	NA	37,900	45,600	NA	4,900	9,200
Sulfate	NA	5,280	11,700	NA	4,670	7,410	NA		
TDS	NA	78,000	88,000	NA	120,000	148,000	NA	110,00	202,000
Nitrates	NA	2,100	1,440	NA	1,600	1,760	NA	570	1,360
Ammonia Nitrogen	NA	110		NA	100		NA	130	
Oil & Grease	NA	5,000		NA	5,000		NA	7,000	***
Orthophosphate	NA			NA			NA		
Phenois			8.4			6.6			9.2
Bis(2-ethylhexyl)pnthalate					-				
Tetrachiomethene	14.5	16.8	6.7						
Toluene				***					
Trichloroethene	175	21.8	85.8	17.7	13.5	12]	
1 ,1, 1-Trichloroethane	114	86.2	30.5	14.9	5.8				
l ,1-Dichloroethane	17.1	15	7.5						
1 ,1-Dichloroethene	7.5	8.6			-				
1 ,2-Dichloroethane	8.8	6.4			-				
above MCL exceeds secondary MCL	•		ection Limi Samples (hi		All data are	in ug/L, exce		tivity in u Ph units	mhos
NA not analyzed for	-	value used	•	**************************************			Tempe	rature in *	С

Table 10 (continued)

Parameters above the detection limit in groundwater samples at the AFTA in Sample Rounds

1 (February 1990), 2 (May 1990), and 3 (July 1990) (page 4 of 5)

	SA	FTA-MII MPLE RO	1	s	FTA-M1: AMPLE RO		SA	1040 MPLE RO	UND
PARAMETER	1	2	3	ī	2	3	1	2	3
Berium	NA	39.2	_	NA	20.2	64	NA	28	_
Cadmium			_		_	30		_	
Calcium	NA	3,290	*4730	NA	1,070	2,000	NA	3,290	4,850
Chromium		_	_		_	26	_	_	-
Copper			_	-	10.8		25.5	24.5	43
lron	NA	71.8	# *6810	NA	68.2	# 68,800	NA	# 1,190	# 2,700
Lead		-	-		_	_			
Magnesium	NA	2,460	•4200	NA	781	1,840	NA	1,660	2,340
Manganese	NA	# 224	# •525	NA	# 127	# 1,110	NA	# 138	# 146
Nickel	64.2	35.5			15.8	27			
Potassium	NA	878	•1560	NA	605	2,066	NA	1,890	3,340
Selenium		_	_						
Silica	NA	1,510	•5080	NA	2,300	11,000	NA	1,640	1,850
Sodium	NA	2,560	•3310	NA	2,823	4,010	NA	3,940	5,820
Zinc	13.8	21.5		19.5		_	52.2	21.2	-
Conductivity	50	60	60	45	30	20	60	79	50
рН	# 5.33	# 4.87	# 4.81	# 5.92	# 4.91	# 5.59	# 5.79	# 6.14	# 5.87
Temperature	14.3	13.8	20	13.7	13.4	19.7	10.3	13.3	17.6
Chloride	NA	2,640	3,460	NA	5,160	6,190	NA	13,000	9,750
Sulfate	NA	16,600	21,800	NA		1,730	NA		4,460
TDS	NA	60,000	92,000	NA	48,000	48,000	NA	74,000	74,000
Nitrates	NA	1,920	1,060	NA	210	506	NA	2,060	
Ammonia Nitrogen	NA	130		NA	130		NA	250	
Oil & Gresse	NA	4,000		NA	4,000	-	NA	10,000	
Orthophosphate	NA	_	_	NA		_	NA		_
Phenois		-	8.4			8.2			28
Bis(2-ethylhexyl)phthalate							23		
Tetrachloroethene							***		
Toluene									
Trichloroethene							***		
1 ,1, 1-Trichlorcethane			-	10.6					
1 ,1-Dichloroethane									
1 ,1-Dichloroethene		-	_	•••			***		_
1 ,2-Dichloroethane					_				
above MCL # exceeds secondary MCL NA not snallyzed for	•		etection Lines (et samples (etd)		All data an	in ug/L, exc	ept conduc pH in ph Temperatu	1 unite	hos

Table 10 (concluded)

Parameters above the detection limit in groundwater samples at the AFTA in Sample Rounds

1 (February 1990), 2 (May 1990), and 3 (July 1990) (page 5 of 5)

		104 AMPLE RO		1	TECTION I		044	GUIDELINE CL's except where
		:	:		AMPLE RO			SMCL'S noted)
PARAMETER	1	2	3	1	2	3		
Barium	NA	25.5		NA	5	10	2,000	proposed
Cadmium				5	5	5	5	
Calcium	NA	2,990	4,780	NA	10	10		not available
Chromium				10	10	10	100	(total Cr)
Copper	145	20.8	45	10	10	10	1,300	proposed
Lron	NA	170	248	NA	10	10	300	SMCL
Lead	79.2		57	30	20	20	5	proposed
Magnesium	NA	1,470	2,070	NA	30	30		not available
Manganese	NA	# 155	# 155	NA	10	10	50	
Nickel		19	19	15	15	15	100	proposed
Potassium	NA	852	1,080	NA	500	100		not available
Selenium		-	-	2		1	50	
Silica	NA	142	1,790	NA	100	100		not available
Sodium	NA	3,640	4,920	NA	30	30		not available
Zinc	116	17		5	10	10	5,000	SMCL
Conductivity	45	89	45					
, pH	# 5.68	6.66	# 5.25				6.5 - 8.5	
Temperature	11.2	13	23.3					
Chloride	NA	25,100	8,980	NA	2,000	2,000	250,000	SMCL
Sulfate	NA	3,060		NA	500	500	250,000	SMCL
TDS	NA	74,000	68,000	NA	10,000	10,000	500,000	SMCL
Nitrates	NA	1000	679	NA	200	200	10,000	
Ammonia Nitrogen	NA	450		NA	10	100		not available
Oil & Grease	NA	9,000		NA	1,000	5,000		not available
Orthophosphate	NA			NA	200	200		not available
Phenols			63	10	5	5		not available
Bia(2-ethythexyl)phthalate				10	10	10	4	
Tetrachioroethene				5	5	5	5	
Toluene				5	5	5	1,000	
Trichloroethene				5	5	5	5	
1 ,1, 1-Trichloroethane	-			5	5	5	200	
1, 1-Dichloroethane				5	5	5		not available
1, 1-Dichloroethene				5	5	5	7	
1, 2-Dichloroethane				5	5	5	5	
above MCL		Below De	ection Lim	ů.	All data as	re in ug/L,	except condu	ctivity in umhos
# exceeds secondary MCL not analyzed for	•	Duplicate value used	semples (hi)	ghest			•	pH units trature in °C

Table 11

Background levels for commonly reported parameters in the Talbot Formation

					PARAM!	ETERS i	n mg/L				
WEJ L No.	DEPTH ft	DATE SAMPLED	Ca	CI	Fe	K	Mg	Mn	Na	pН	TEMP C°
DE18 ⁱ	60	9/12/44		9	14		0			5.6	
DE49 ³	28	3/29/88	37	21	0.022	4	26	4.9	15	5.0	12
DE49 ³		7/19/88	19	8.7	0.006	2.7	14	2.4	5.3	4.6	13
DE86 ¹	60	10/1/73	5.8	19	0.15	1.5	3.7	0.1	9.5	5.6	
DE86 ²		6/10/87	5.9	24	0.03	1.6	4	0.18	11	5.2	
DE913	78	4/15/88	1.3	3.7	0.17	0.8	0.55	0.022	4.2	6.2	15
D/3923	38	4/7/88	9.8	55	6.3	1	8.9	0.18	35	6.1	14
DE!'2 3		7/19/88	12	63	7	1.5	9.9	0.2	34	6.1	15
DE168 ²	50	5/18/87	5.9	9	13	0.8	3.7	0.26	7.4	6.3	
DE1792		9/3/87	3.9	34	0.13	2.2	4	0.02	17	5.2	
DE182 ²	100	3/31/88	4.3	16	0.26	1.8	3.1	0.13	16	5.7	15
DE190 ²	50	6/10/87	9.2	12	0.73	2.2	9.7	0.05	2.6	5.3	
DE1953	55	4/12/88	11	26	0.19	3.4	7.3	0.13	9.7	5.6	14
DE1983	29	8/25/88	12	14	0.023	3.1	7.2	0.06	8.3	4.5	15

Maryland Geological Survey Water Resources Basic Data Report No. 7

USGS Water Resources Data Maryland and Delware Water Year 1987 Report MD-DE-87-1

³ USGS Water Resources Data Maryland and Delware Water Year 1988 Report 'AD-DE-88-1

⁻⁻ No Data

Table 12

Range of parameters in background and AFTA wells

	BACKGRO	BACKGROUND WELLS		
PARAMETER	GENERAL RANGE	MAXIMUM VALUES	RANGE OF VALUES AT AFTA WELLS	AFTA WELLS EXCEEDING GENERAL BACKGROUND RANGE
t 0	1,300 to12,000	2 wells at 19,000 to 37,000	1,070 to 11,800	none
IJ	3,700 to 26,000	3 wells at 34,000 to 63,090	2,340 to 45,600	M9 in Rounds 2 and 3
Fe	6 to 730	4 wells at 6,300 to 14,000	39 to 68,800	M6 and 1040 in Round 2 M4, M7 thru M12 and 1040 in Round 3
×	800 to 2,200	4 wells at 2,700 to 4,000	518 to 6,750	M4 and M5 in Round 2 M4, M9 and 1040 in Round 3
Mg	550 to 9,900	2 wells at 14,000 to 26,000	740 to 6,410	none
Mn	20 to 260	2 wells at 2,400 to 4,900	14 to 1,360	M7 in Round 2 M7 thru M12 in Round 3
N.	2,606 to 17,000	2 wells at 34,000 to 35,000	2,040 to 10,800	none
Н	4.5 to 6.3	••••	4.52 to 6.6	1041 in Round 2
		NOTE : Data are in ug/L, except pH	ug/L, except pH.	

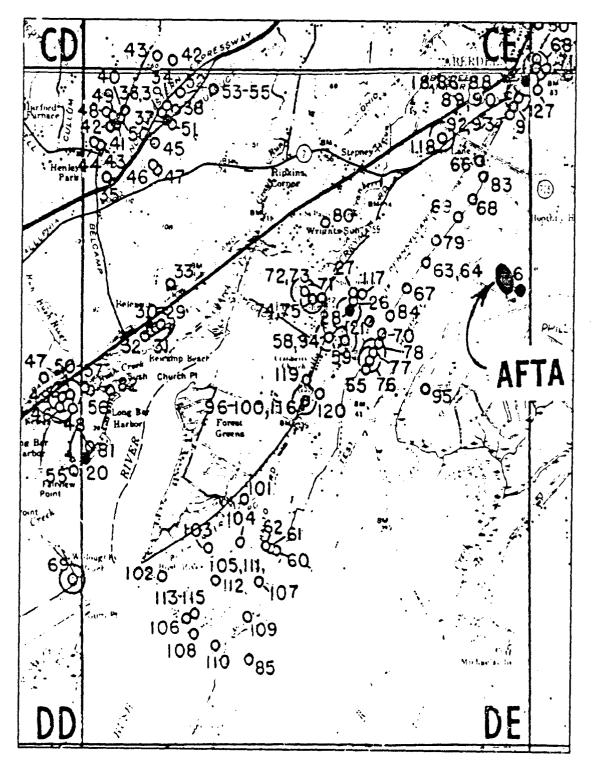


Figure 42. Location of ground-water wells used for background water quality (Nutter and Smigaj, 1975).

Chloride values of 37,900 ug/L and 45,600 ug/L (sample rounds 2 and 3, respectively) at FTA-M9 were the only values to exceed the general range of background values of 3,700 to 26,000 ug/L. The chloride values at FTA-M9 are similar to the maximum values of 34,000 to 63,000 ug/L reported in 3 of the background wells. The SMCL guideline of 250,000 ug/L was not exceeded at the AFTA.

The values for iron ranged from 68.2 to 1,190 ug/L and 39 to 68,800 ug/L in sample rounds 2 and 3, respectively. Wells FTA-M6 and 1040 (969 ug/l and 1190 ug/L, respectively) were the only wells in round 2 to exceed the general background range of 6 to 730 ug/L. Eight wells with values ranging from 2,700 to 68,800 ug/L exceeded the general background range in round 3. The concentration of iron in wells FTA-M7, -M8, -M9, -M10, -M11 and -M12 increased 2 orders of magnitude from sampling round 2 to round 3. The SMCL guideline of 300 ug/L was exceeded in 8 wells in both round 2 and 3. Well DE190 (730 ug/L) was the only background well included in the general range background values to exceed the SMCL.

The general range of background values for potassium is 800 to 2,200 ug/L with maximum values ranging from 2,700 to 4,000 ug/L in 4 background wells. Wells FTA-M4 (4480 ug/L) and -M5 (4480 ug/L) exceeded the general range of background values in sample round 2. Wells FTA-M4, FTA-M9 and 1040 (6750 ug/L, 3150 ug/L and 3340 ug/L, respectively) exceeded the general range in round 3. There is no MCL or SMCL for potassium.

The general range of background values for manganese is 20 to 260 ug/L with maximum values of 2,400 and 4,900 ug/L at 2 wells. Well FTA-M7 (416 ug/L) was the only well to exceed the general range of background values in round 2. Wells FTA-M7 thru -M12 exceeded the general range of values with values ranging from 274 to 1360 ug/L. The manganese concentrations at wells FTA-M7, FTA-M8, FTA-M10 and FTA-M12 increased an order of magnitude from sampling round 2 to round 3. The SMCL of 50 ug/L was exceeded in 9 wells in sampling round 2 and 11 times in round 3. Eight of the 10 wells used to establish background values exceeded the SMCL with values exceeding the SMCL ranging from 50 to 4900 ug/l.

The pH values at the AFTA (4.52 to 6.6) are within the general range of background values of 4.5 to 6.3. The only well at the AFTA that fell within the SMCL pH guidelines of 6.5 to 8.5 was well 1041 with a pH of 6.6 in sample round 2.

The temperature in the background wells ranged from 12° C in the late winter-early spring to 15° C in the summer. The temperatures in the AFTA wells ranged from 11.2 to 14.3° C, 11.5 to 18.4° C, and 17.6 to 24.9° C in sampling rounds 1, 2 and, 3 respectively.

Table 13 The range of values for the ground water chemical parameters above the detection limit at the AFTA.		GUIDELINES	2.000 proposed MCL	S MCL	not available	100 MCL (total Cr)	1,300 proposed MCL	300 SMCL	5 proposed MCL	rxx available	SO SMCL	100 MCL	rxx available	SO MCL	rot available	not available	SOO SMCL	250,000 SMCL	250,000 SMCL	500,000 SMCL	10,000 MCL	nx available	not available	not available	not available	4 MCL	S MCL	1,000 MCL	S MCL	200 MCL	not available	7 MCL	5 MCL	data are in ug/L
	nxsi	MAX	153	30	11,800	51	45	008.89	57	6,410	1,360	41	6,750	-	11,200	9,830	192	45,600	28,100	202,000	2330	-	7,200		63		10.2	6.7	162	43.2	7.5	6.9		ni
	ROUND 3 (JUL 1990)	MIN	17		2.000	97	43	39	32	1,840	146	61	918		268	3,110		2,046	1,730	48,000	350	-			5.3	-	6.7		12	5.8	l			number of samples above Detection limit number of samples above GUIDELINE
	NOON	٧,		-				80	3		11																2		4			-		ove De
		£	\$	1	£1	٤	7	11	3	13	=	9	13		1.1	13	-	13	11	13	12		-		12		1		*	3	-	-		pics ab
	ROUND 2 (MAY 1990)	MAX	73.5	i	8,880		24.5	1,190	1	3,580	416	68	4,480	1.7	2,390	10,800	137	37,900	34,600	12,000	4,200	31,000	10,000	320			. 44	1	219	119	15	31.6	6.4	er of same
		MIN	20.2	ļ	1,070	÷	10.8	68.2		740	<u>*</u>	15.8	818	4	142	2.040	11	2,640	1,650	46,000	210	100	3,300			1	8.91	-	13.5	5.8	6.11	9.8	ļ	_
		<						38			6														•		2		4			7		S#
d wa		£	13		13		6	13		13	13	8	13	S	13	13	12	12	10	13	13	2	13	-			2		+	•	7	7	-	
unouz ac	ROUND I (FEB 1990)	MAX					145		79.2			144		-			116									58	14.5	-	223	114	17.1	7.5	8.8	minimum value maximum value
The range of values for the		MIN	N/A	J	N/A		25.5	V/N	1	V/V	٧/٧	28.2	V/N		N/A	¥/N	7.75	V/V	V/N	N/A	V/N	. Y/N	V/V	N/A		21	11.7		17.7	9.01	9.8	9	ı	
		\$										1												•	•	7	2	•••••	4			-	-	MIN
	24	K					7		-			5	•••••				13							•	•••••	7	2		*	~	7	7	-	
		PARJMETER	Banum	Cedmum	Cakium	Chromium	Cupper	lrva	Lead	Magnesium	Manganese	Nickel	Potassiem	Selenium	Silica	muibo.2	Zinc	Chlonde	Sulfate	TDS	Nitrates	Ammonia Nitrogen	Oil & Greak	Orthophosphate	Phanols	Bia(2-chyth-ryl)phthalate	Tetrach ¹ oroethene	Toluene	Trichloroethene	1 ,1 ,1-Trichloroethane	1 ,1-Dichloroethane	1 ,1-Dichloroethene	1 ,2-Dichloroethane	N/A Not Analyzed for Below Detection Limits

Parameters " .ceeding MCL's

During the 3 sample rounds at the AFTA, the following 8 parameters (Table 13) exceeded an established MCL value:

cadmium	tetrachloroethene	bis(2-ethylhexyl)nhthalate
lead	trichloroethene	1,2-dichloroethane.
nickel	1,1-dichloroethene	

from the contract of the contr

Cadmium was detected at 30 ug/L in sample round 3 at well FTA-M12. Well FTA-M12 is an up-gradient well at the AFTA. Cac nium was not found above the detection limit of 5 ug/L in any other well in sample rounds 1, 2 or 3.

Lead above the proposed MCL guideline of 5 ug/L was found in well 1041 (79.2 ug/L) in sample round 1, and wells FTA-M2 (46 ug/L), FTA-M7 (32 ug/L) and 1041 (57 ug/L) in round 3. Well 1041 was the only well to exceed the MCL guideline of 50 ug/L which existed when the samples were analyzed. Lead was not found above the detection limit of 30 ug/L, 20 ug/L and 20 ug/L in any other wells in sampling rounds 1, 2 or 3, respectively.

Nickel exceeded the MCL guideline value of 100 ug/L in sample round 1 at well FTA-M6 (144 ug/L). Nickel ranging from 15.8 to 68 ug/L was detected in at least 1 of the 3 sample rounds in 9 of the 13 wells sampled at the AFTA. Nickel was also detected in sample rounds 2 and 3 (68 ug/L and 41 ug/L, respectively) at well FTA-M6. Wells FTA-M7 and -M9 were the only other wells where nickel was detected in all 3 sample rounds.

Bis(2-ethylhexyl)phthalate, ranging from 21 to 58 ug/L, was found in 7 samples in round 1. There were no samples above the detection limit in rounds 2 or 3. Bis(2-ethylhexyl)phthalate is a solvent used in laboratories. Bis(2-ethylhexyl)phthalate was detected in the lab blank at 21 ug/L and is considered to be a lab contaminant in the samples from sample round 1.

Tetrachloroethene was found in wells FTA-M7 (11.7 ug/L, 44 ug/L and 10.2 ug/L) and FTA-M8 (14.5 ug/L, 16.8 ug/L and 6.7 ug/L) in sample rounds 1, 2 and 3, respectively. The MCL guideline of 5 ug/L was exceeded at wells FTA-M7 and FTA-M8 in all 3 sample rounds.

Tetrachloroethene was not found in any other well.

Trichloroethene was found in wells FTA-M6, -M7, -M8 and -M9 in sample rounds 1, 2 and 3. The concentrations are listed below in ug/L:

WELL	<u>ROUND 1</u>	ROUND 2	ROUND 3
FTA-M6	223	70	162
FTA-M7	87.5	219	62.2
FTA-M8	175	21.8	86.8
FTA-M9	17.7	13.5	12

The MCL guideline of 5 ug/L was exceeded in wells FTA-M6 thru -M9 in all 3 sample rounds. Trichloroethene was not detected in any other wells.

1,1-Dichloroethene was detected at or above the MCL guideline of 7 ug/l in wells FTA-M6, -M7 and -M8. 1,1-Dichloroethene was detected in wells FTA-M6 and -M8 at 6 ug/L and 7.5 ug/L, respectively, during sample round 1. Wells FTA-M7 and -M8 had concentrations of 31.6 ug/L and 8.6 ug/L, respectively, in sample round 2. Well FTA-M7 had 6.9 ug/L in sample round 3.

1,1-Dichloroethane was detected only at well FTA-M8 in sample rounds 2 (8.8 ug/L) and 3 (6.4 ug/L). Both values exceed the MCL guideline of 5 ug/L.

Summary of Chemical Data

Summary of surface water chemistry

Cadmium, lead, methylene chloride, and benzene exceeded the MCL guidelines in all 4 surface water samples at the AFTA. Chromium, copper, lead, silver, and zinc exceeded the fresh and/or marine water quality criteria in all 4 surface water samples. Cadmium exceeded the fresh water quality criteria in samples FTASB2 (Berm 2) and FTASB3 (Berm 3). Total DDT did not exceed 1000 ug/L, but did exceed the fresh and marine water quality criteria in samples FTASB3 (Berm 3), FTASB3SP (separation pond) and FTASB3OF (outfall). Endosulfan II exceeded the fresh and marine water quality criteria in sample FTASB3 (Berm 3).

Oil and grease were detected in sample FTASB2 and FTASB3 at 34,763,000 ug/L and 11,596,000 ug/L, respectively. Toluene, T-xylene, phenanthrene, and 2-methylnaphthalene are other fuel components detected in some or all of the samples.

Summary of soil gas data

The target compounds benzene (upto 6850 ug/L), toluene (upto 7550 ug/L) and O-xylene (upto 850 ug/L) were detected at the AFTA. Many of the chromatograms that identified the target compounds had several early eluting peaks (unknowns) which is typical of a gasoline chromatogram (USACE, 1989b).

Summary of soil sample data

Cadmium and lead were the only parameters to exceed the guidelines (Table 8) in 2 soil samples from Berm 1. Tetrachloroethene was the only parameter to exceed a guideline in 4 samples from Berm 2. Low levels of phenanthrene, T-xylene, toluene, and ethylbenzene were detected in some of the 4 samples from Berm 2. No guidelines were exceeded in 2 soil samples collected from the drainage from Berm 2. No VOCs were detected in either of the samples from the drainage.

Lead, zinc, and tetrachloroethene exceeded the guidelines in 4 samples collected from Berm 3. VOCs

and breakdown products from fuels were detected in samples FTAB33 and FTAB34 from Berm 3. Lead was the only parameter exceeding a guideline in 2 samples from the separation pond. Acetone were detected in both samples from the separation pond. VOCs were detected in the outfall sample, but no parameter exceeded a guideline. Lead, DDT, and PCB-1248 exceeded the guideline in sample FTAB3DD from the drainage pathway.

No guidelines were exceeded in any of the 3 samples from the Old Smoke House, however organics were detected in the samples from inside and outside Old Smoke House. Sample FTASH1 from outside the Old Smoke house contained most of the organics.

Lead, cadmium, mercury, silver, and PCB-1248 exceeded guidelines in the 2 samples from the Fire Extinguisher Practice area. Endrin (0.083 mg/Kg) and aldrin (0.0009 mg/Kg) were in sample FTAFE1.

Total DDT ranging from 0.0007 mg/Kg to 1.495 mg/Kg were detected in 18 of the 21 soil samples from the AFTA. Sample FTAB3DD (1.495 mg/Kg) from the drainage between Berm 3 and the separation pond was the only sample to exceed the 1 mg/Kg guideline for DDT.

Summary of Groundwater Chemistry

The groundwater chemistry shows the AFTA is the source of the VOCs found in the groundwater monitor wells at the AFTA. Tetrachloroethene, trichloroethene, 1,1-dichloroethene, and 1,2-dichloroethane were detected in monitor wells down-gradient of the AFTA in levels exceeding the established MCLs for these parameters. 1,1,1-trichloroethane with levels ranging from 5.8 to 119 ug/L was also detected in the down-gradient monitor wells at the AFTA, but did not exceed the established MCL of 200 ug/L. Toluene at 9.7 ug/L (well FTA-M7, sample round 3) was detected only one time in 3 sample rounds, and did not exceed the established MCL of 1000 ug/L.

Cadmium, lead, and nickel were the only metals to exceed established MCLs. Cadmium was detected only 1 time in well FTA-M12 (30 ug/L) which is an up-gradient well at the AFTA. Lead was detected once in well FTA-2, which is an up-gradient well, once in well FTA-M7, which is down-gradient of the training pits, and twice in well 1041, which is a water supply well located approximately 1000 ft east or cross-gradient from the training pits. Nickel was detected above the MCL of 100 ug/L once in well FTA-M6 (144 ug/L). Nickel is the only metal that exceeded an MCL that is commonly found in many other wells at the AFTA. Nickel was found in the down-gradient and up-gradient wells, including well 1041, at similar values, ranging from 17.8 to 68 ug/L.

PART VIII: FINDINGS AND RECOMMENDATIONS

Findings

The investigation reported herein was completed in 1990 and this report, in draft form, was reviewed by the APG and the EPA, Region III. Subsequent and ongoing field investigations have, and will provide, additional data about the AFTA and will influence findings presented in this report. Subsequent studies include an August, 1991 groundwater sampling round and current (1992) field investigations in the AFTA and nearby western AA-APG boundary.

The water table aquifer at the AFTA is the Talbot Formation. Underlying the sands and gravels of the Talbot Formation at the AFTA are the clays of the Arundel Formation. Groundwater flow beneath the AFTA is to the south year round.

Analysis of groundwater from the monitor wells indicate the AFTA is contributing chemical contaminants to the upper aquifer. VOCs were the only contaminants found in the groundwater that consistently exceeded established MCLs. VOCs exceeding an established MCL include:

Tetrachloroethene

Trichloroethene

- 1.1-dichloroethene
- 1.1-dichloroethane

Cadmium, lead, and nickel exceeded established MCL values in at least 1 well in the 3 sample rounds. Cadmium was detected in only one sample from a monitor well up-gradient of the AFTA. Lead was detected in 2 monitor wells, 1 time in each well, and twice in standby production well 1041, which is located cross-gradient from the AFTA. Nickel exceeded the MCL value 1 time but was commonly found in most wells at the AFTA. Iron and manganese exceeded Secondary MCL values.

Surface water samples from the bermed pits and the separation pond contained cadmium, lead, methylene chloride, and benzene that exceeded MCL guidelines. The surface water samples also contained chromium, copper, lead, silver and zinc that exceeded the fresh and/or marine water quality criteria.

Surface soil samples show the following parameters exceeded guidelines at one or more of the training areas at the AFTA:

Cadmium

Mercury

PCB-1248

Tetrachloroethene

Lead Zinc

Silver

DDT

VOCs, pesticides, and fuels at levels below guidelines were detected.

Recommendations

The following additional field investigations are recommended.

- Soil sampling to define the horizontal and vertical extent of soil contamination at the AFTA.
- Install monitor wells to define the horizontal and vertical extent of the groundwater contamination from the AFTA.
- Monitor wells should be installed between the AFTA and the Harford County
 production wells along the western AA-APG boundary so chemical characteristics of
 the groundwater between the AFTA and Harford County wells can be monitored.
- Water levels in the monitor wells at the AFTA and any adjacent areas should be measured quarterly to monitor groundwater gradients.
- The AFTA monitor wells, to include wells 1040 and 1041, and the monitor wells between the Harford county production wells and the AFTA should be sampled and analyses conducted for:
 - EPA Region III Target Compound List (TCL)
 - general water quality parameters
 - oil and grease
 - total recoverable hydrocarbons
 - metals.
- Three quarterly rounds of data should be collected.

REFERENCES

Bandoian, C. A. and Wardrop, R. T. 1985. Hydrogeology of the proposed Perryman power plant. Draft report prepared for the Power Plant Siting Program, Maryland Department of Natural Resources. West Chester, PA: Enironmental Resources Management, Inc.

Dames and Moore, Inc. 1972. Geology and seismology. In chapter 2, section 2.4 of Perryman nuclear power plant, units 1 and 2, environmental report, Baltimore Gas and Electric Company. Baltimore, MD.

Derryberry, N.A., Miller, S.P., and Breland, P.L. 1990. RCRA facility assessment - other areas, Aberdeen Proving Ground. Draft Technical Report TR-GL-93-___. Vicksburg, MS: US Army Engineer Waterways Experiment Station.

Environmental Protection Agency, 1991. Drinking water regulations and health advisories; November 1990, updated January 1991. Washington, D.C.: Office of Drinking Water, US Environmental Protection Agency,

Environmental Protection Agency, 1986. RCRA groundwater monitoring technical enforcement guidance document. OSWER-9950.1, September 1986, Washington, D.C.: Office of Solid Waste and Emergency Response, US Environmental Protection Agency,

Environmental Protection Agency, 1986. Test methods for evaluating solid waste, physical/chemical methods. SW-846. Washington, D.C.: Office of Solid Waste, US Environmental Protection Agency,

Environmental Reporter. March 1990. Complying with the new RCRA toxicity characteristics and TCLP. Washington, D.C.: Bureau of National Affairs,

Federal Emergency Management Agency. 1983. Flood insurance rate map Harford County, Maryland (unincorporated areas). Office of Solid Waste, U. S. Environmental Protection Agency, Panels 130 (1985), 135 (1983), 155 (1984) and 160 (1983), Baltimore, MD: Federal Emergency Management Agency.

Glaser, J.D. 1969. Petrology and origin of Potomac and Magothy (Cretaceous) sediments, Middle Atlantic Coastal Plain. Report of Investigations No. 11., Baltimore, MD: Maryland Geological Survey.

Hansen, H.J. 1972. A user's guide for the artesian aquifers of the Maryland Coastal Plain, part two: aquifer characteristics. Baltimore, MD. Department of Natural Resources, Maryland Geological Survey,

James, R.W., Simmons, R.H., Strain, B.F. and Smigaj, M.J. 1988. Water resources data - Maryland and Delaware - water year 1988. Water-Data Report MD-DE-87-1. Towson, MD: US Geological Survey.

James, R.W., Simmons, R.H. and Strain, B.F. 1987. Water resources data - Maryland and Delaware - water year 1987. Water-Data Report MD-DE-87-1. Towson, MD: U.S. Geological Survey.

McMaster, B.N., Bonds, J.D., Hendry, C.D., Williamson, D.F., Hoily, J.B., Wiese, J.H., Marsh, J.D., Jones, C.F., Denahan, S.A., Govre, K.C. and Regenatraif, A.A., 1981. Installation assessment of Aberdeen Proving Ground-Aberdeen Area, Report No. 301; prepared for the U.S. Army Toxic and Hazardous Materials Agency, Environmental and Safety Division, Aberdeen Proving Ground, MD. Gainsville FL: Environmental Science and Engineering, Inc

Mildenberger, J. R. and Sgambar, J. P. 1985. Investigation of groundwater conditions at the Perryman power plant site, Harford County, Maryland. Prepared for Baltimore Gas and Electric Company. Baltimore, MD: Geraghty and Miller, Inc.

Miller, S.P., Derryberry, N.A., Breland, P.L. and Wade, R. 1990. Michaelsville Landfill hydrogeologic assessment. Draft Report TR-GL-93-___. Vicksburg, MS: US Army Engineer Waterways Experiment Station.

Nutter, L.J. and Smigaj, M.J. 1975. Harford County groundwater information: well records, chemical quality data, and pumpage. Baltimore, MD: Maryland Geological Survey,

Owens, J.P. 1969. Coastal Plain rocks of Harford County. In *The geology of Harford County*. Baltimore, MD: Maryland Geological Survey,

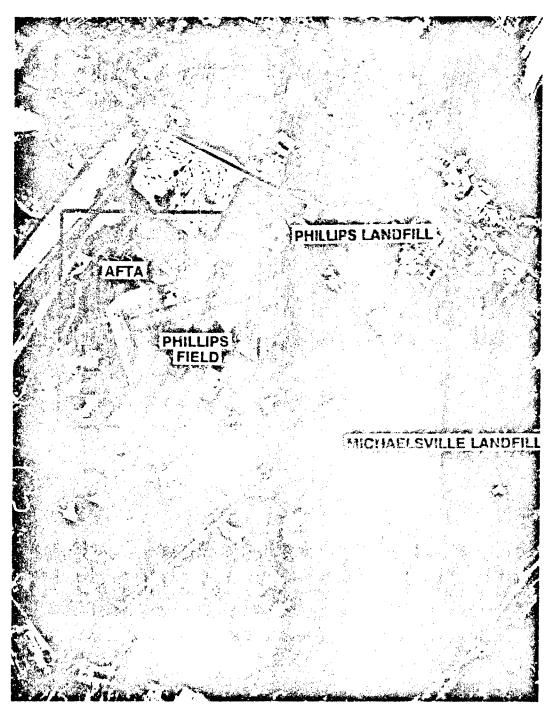
Shields, E.J. 1990. Pollution control engineering handbook. Des Plaines, IL: Cahners Publishing Company.

Sisson, P.A. 1985. Climatic summary for Aberdeen Proving Ground, Maryland. Reference Pamphlet No. 3. Aberdeen Proving Ground, MD: Atmospheric Sciences Laboratory.

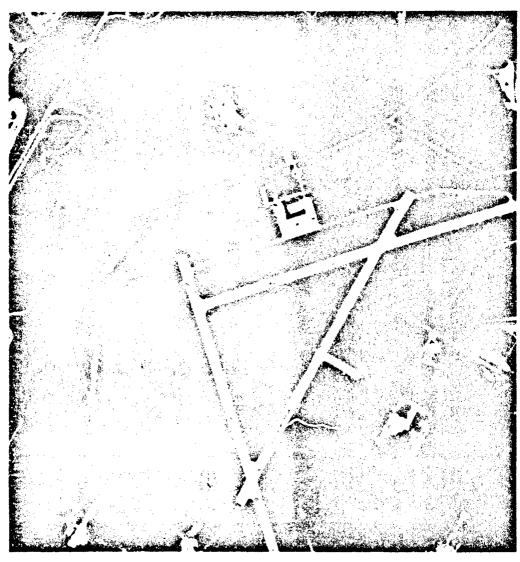
Soil Conservation Service. 1975. Soil survey of Harford County area, Maryland. Washington, DC: US Department of Agriculture in cooperation with the Maryland Agricultural Experiment Station.

Southwick, D.L. and Owens, J.P. 1968. Geologic map of Harford County, Maryland. Baltimore, MD: Maryland Geological Survey.

Stefano, J. E. 1989. Report of analysis, soil gas survey, Fire Training Area, Aberdeen Proving Ground, Maryland. Baltimore, MD: US Army Engineer District Baltimore,

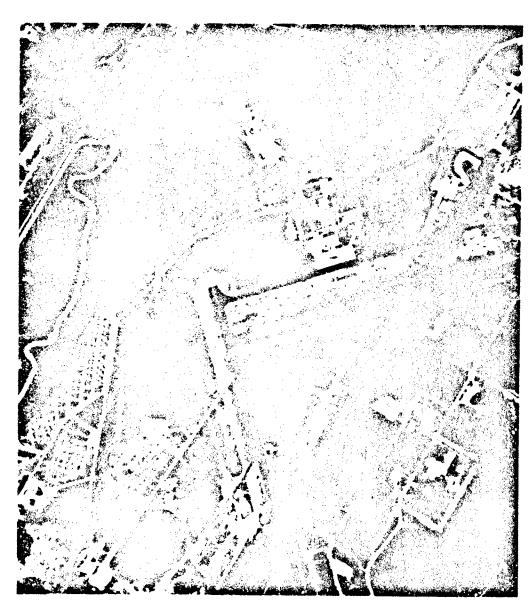

US Army Corps of Engineers. 1980. Hydrogeology of Michaelsville and Phillips Army Airfield Landfills, Aberdeen Proving Ground, Maryland. Baltimore, MD: US Army Engineer District Baltimore.

US Army Corps of Engineers. 1983. An evaluation of existing wells and water supply potential for Aberdeen Proving Ground, Maryland. Baltimore, MD: US Army Engineer District Baltimore.

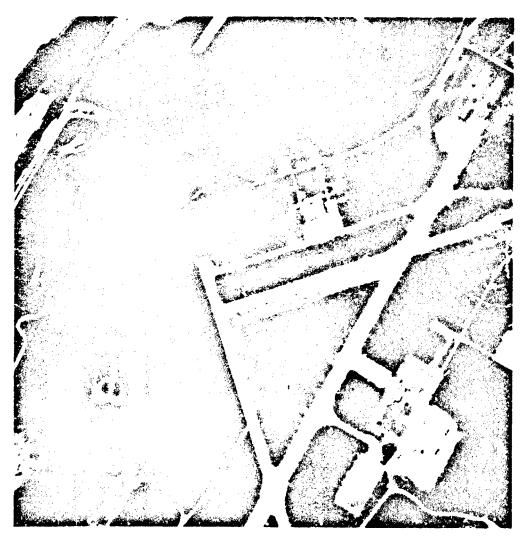

Vokes, H.E. 1957. Geography and geology of Maryland. Bulletin 19. Baltimore, MD: Maryland Geological Survey,

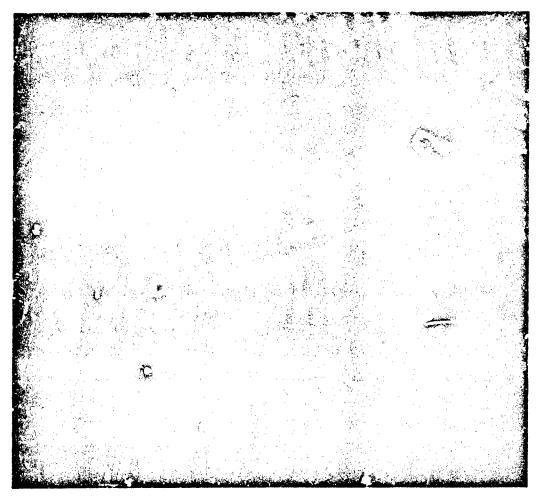
APPENDIX A

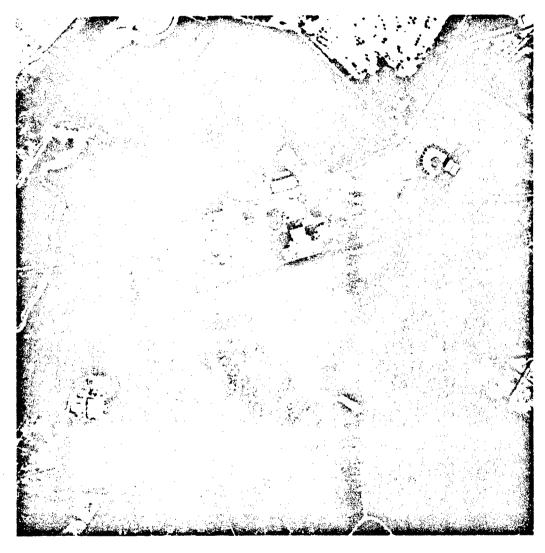
AERIAL PHOTOGRAPHS OF THE AFTA 1952 THRU 1989


1989 aerial photograph (NAPP 19-79, taken 4-20-89) of the northern area of the Aberdeen Area Aberdeen Proving Ground (see Figure 8 in the report). The boxed-in area, which includes the AFTA, and parts of Phillips Field and Phillips Landfill, is the general area shown in the aerial photographs on pages O-2 thru O-8.

Aerial photograph ANK-3K-67 (July 12, 1952): Barracks built during World War II occupy the AFTA. Old aircraft were being stored northwest of the AFTA (barracks area).


March 10, 1956: Barracks built during World War II occupy the AFTA. Old aircraft and other materials were being stored northwest of the AFTA (barracks area).


Aerial photograph ANK-3T-76 (August 28, 1957): The barracks (2 huildings) on the western and eastern sides have been removed. The area northwest of the AFTA (barracks area) was being used to store old aircraft.

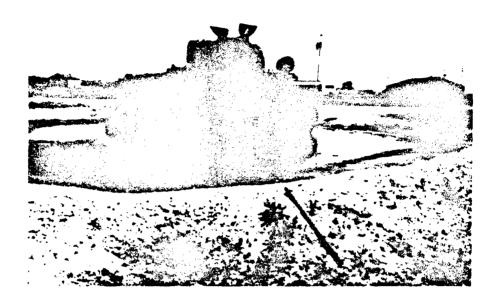

Aerial photograph ANK-5DD-59 (June 10, 1964): All the barracks have been removed. There is a "pond like" feature (just west of the aircraft) at the location of the AFTA Separation Pond.

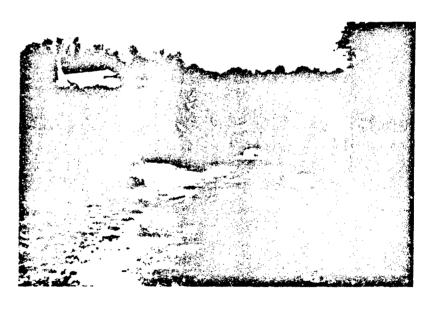
Aerial photograph 24025 280-36 (July 6, 1980): The AFTA site was being used as a fire training area.

Acrial photograph 581-177 HAP-80 (March 24, 1982): The AFTA site was being used as a fire training area.

Aerial photograph NAPP 19-79 (March 20, 1989): As of March 1989, fire training practices at the AFTA were stopped. See Figure 31 in the report for the location of training areas at the AFTA.

APPENDIX B


PHOTOS OF TRAINING AREAS AT THE AFTA 1989


Berm 1 containing the jet aircraft (F-89 Scorpion).

Berm 2 containing the broken flange training area. Note in the background the Old Smoke House and the pump house at the Underground Storage Tank, to the left and right, respectively, of the flange in Berm 2.

Berm 3 containing the military tank. Phillips Army Airfield is in the background.

Separation pond behind Berm 3.

Old Fire Extinguisher Practice Area.

Underground Storage Tank area with the pump house in the background. The standpipes for the underground storage tank can be seen in the graveled area in front of the pump house.

Old Smoke House with the Separation Pond (located behind Berm 3) in the foreground.

APPENDIX C

AFTA BORING LOGS
GROUND-WATER MONITOR WELLS FTA-M1 THRU FTA-M12
AND SOIL BORINGS FTA-B1 THRU FTA-B3

								Hale No		_
DRIL	LING L		HOISION		HSTALI	APG			SHEET 1	
I. PROJECT					W. MEE	AND TYP	E OF BIT	E SHOWN (73H ME		\exists
Fire Tr	(Comde	totae or Si	at land						~	
X14777	Y636	13			1			GMATION OF DRILL (ud Rotary)		
WES	(As about		ene suite			AL NG OF			UNCISTURBED	7
20 /3/3 80				AFTAMI		AL HUMBE			<u>.:</u>	-
A HAME OF	TECTY					VATION G				7
4. DIRECTIO	W 0 F HO				IS. DAT	E HOLE			0-5-89	7
- DYERTI					17. ELE	VATION TO				1
THICKNES						AL CORE I		Y FOR MORING		1
S. TOTAL DE	EPTH OF	HOLE		31.8	75. 22-25	Pau	1 Luca	8		
ELEVATION	DEPTH	LEGENO		CLASSIFICATION OF MATERIA	4.8	S CORE	BOX UR SAMPLE HO.	(Drating time, un meathering of	AKS for loos, depth of	
<u> </u>		 • -	 			-	1	Transme, or	, it squarest	┸
	=	1	S11	t Clayey						E
	1 =	}	1				Ì			E
	=	1								F
	_	1								F
i .	2 -]	!					•		F
	=	3						j		E
	3 —	}						i		E
	=	1	1							1
	4 -	1					İ			F
	=	}								E
	5	}								E
] =	1			;					F
	ļ, <u> </u>	1		. 7 Ingrascas						E
	6 =		1-014	y % increases						E
	_ =									F
	7 =			vel appears d % increases						E
	_									E
	8 =					1				-
										E
	9									F
	=		ļ							F
	10									E
	=			d M-C, Silty, ce of Clay						F
	11 =			·						E
						[E
	12 —		•			j				F
					- 1					E
	13 -		ļ							E
	Ē		Sand	d M-C Well Rounded	l	i				F
	14			(Clean)						E
	., =									=
	<u>∃</u>		Sand	dy Clay	j	1				F
	15									E
1	., =		Clay	y Sandy Silt	ŀ					F
	16						j			E-
	_ =			i, Clay, Trace of S	1t,	1				E
	17 =		Grav	/el	1	[l			F
	Ξ				1	1				E
	18						İ			F
	\exists				ļ					F
	19 📑					İ	:			
	,, 🗆		Ť	(Cont.)		1				E
ENG FORM	20 -		L	(Cont)		PROJECT			HOLE NO.	上

DRILL	ING LO	KG	DIVISION		INSTALL	ATION			OF 2 SHEETS	
1. PROJECT					10. SIZE	AND TYPE	OF BIT	SHOWN (TWM - MSL)		
2 LOCATION	(Coorder	aree er 3	(arten)		1					
1. DRILLING					12. MANU	FACTURE	A'S DESIG	NATION OF DRILL		
					13. 1014	L NO OF	OVER-	DISTURGED	UNDISTURBED	
4. HOLE HO.	(A	-	AFTAMI				A CORE D		<u> </u>	
S. HAME OF	DRILLER	-					OUND WA			
4. DIRECTION	N OF HOL				N. DATE	HOLE	STA	100	MPLETED	
VERTIC		NC L IN 4	DE6. PRO	₩ ¥€#Ŧ.			P OF HOL	£ 58.63		
7, THICKHES	5 OF OVE	~8URO	CH						•	
S. DEPTH OR					19. S/GM/	TURE OF	INSPECT	OR		
S. TOTAL DE		Ţ	31.8	MATERIA	14	S CORE	BCX OR SAMPLE NO.	REMAP	iKS.	
ELEVATION .	DEPTH	LEGEN	CLASSIFICATION OF	-		ERY	HO.	(Drilling time, unit	if eignificant	
		Ť	(Cont)							
		}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						[
	21 —	1								_
	=	1								E
	22 -									
	=	1							Ì	E
	23 —]								E
	=	1							ļ	F
	24 -	1								E
	=	}								=
	25 —	1						,		
] =	1								E
	26 -	}								느
	=	1								E
	27 —	3								Ε.
	=	1								E
	28 -	3								E
	- =	‡								E
	29 =	1								E.
	-	1	Sand, F-M, well		d					E
1	30 —	3	to subangular, a gravel (1/4" to	ilt, 1-1/2	• 1					E
[=	1	graver (7/4 to	/.	,					F
	31 —	3								E
	=	1								F
	32 —	}								E
1	" =	1	Bottom of hole							F
i] =	3								E
]	=	‡								F
1	=	3								E
1	=	1	1			İ				E
	1 =	1						ļ		E
	=	3	1			1				E
}	=	4								F
	=	1								E
	=	‡					1			F
ļ	-	Ė								E
1		3								E
	-	‡							·	F
		Ξ						ļ		E
	-	4						ļ		F
		3						1		E
ENG FORM	11076	Ъ				PROJEC	1	<u> </u>	HOLE NO.	_

			NVISION	INSTALL	ATION			SHEET ,
DRILL	ING LO		44.5.04			APG		OF 2 SHEETS
I. PROJECT		سلست			AND TYPE			1
				IL BAY	A FOR PE	EVATION	PORK (188 - MIT)	
Fire Tr	aining	Area	(-()					i
				12 8481	PACTURE	M'S CESI	GMATION OF ORILL	
1 ORILLING	V639	-		Fafl	ine 150	00 (Mus	i Rotary)	
				IL TOT		OVES-	OUNTURNED	
4. HOLE NO.	(As show		ring IIII e	-	L NO CF	LES TARE	H	<u> </u>
and His ma			AFTAM2					
& NAME OF	DRILLER							
Konecn	١٧			IL ELE	ATION GE			
& DIRECTIO	H OF HOL	. £		M. DATE	F WO! #		•	MPLETED
- VERTI	CAL	-	D DEG. FROM VERT.			نلل	1-19-89	11-20-89
				IT. ELE	ATION TO	P OF 40	LE 54.89	i
7. THICKNES	5 OF OVE	REURD	EN	10 707	L CORE S	FCOVER	FOR BORING	
4. DEPTH OR	ILLEO I	-	×		ATURE OF			
S. TOTAL DE			27.5	1	aul Luc			i
S. TOTAL DE		1					DAMPR	
ELEVATION	DEPTH	LEGEN	CLASSIFICATION OF MATERIA		RECOV	SAMPLE NO.	(Drating time, unio	r loss, depth of
		١.			EAT	NG.	-collected, etc.,	II elentitoanti
	_ <u></u> -	-						
		1	Silty clayey		ł	1		F
	_	ł	Brown to tan			1		ļ
	,	1	Sand increases with de	pth				<u> </u>
	-	ł	i			}		⊢
!	=	1				1		E
	=	1	ļ			1		F
1	2 —	1	1			1		
	=	1		İ		1		F
	-	1	1		· '	l i		E
	3	1	i			1		ᄃ
[l	j	1		į i			E
	=	}				1		F
1	-	1				1 1		h
	4 =	1	1 nu -1 nu					<u> </u>
	-	1	Silt, sandy F-M, clay,					<u> </u>
1		1	trace of gravel					F
	5	1	1					j
}	=	1						
	=	4						
	_ ،	1	-Sand I increasing with	denth				
	° =	₹ .	Jane - Incident - Incident			1 1		
	_				ļ			
1	_	1	Sand P-M-C poorly sort		1	1		├
(⁷	1	silt, coarsening upwar	d vitt				<u></u>
}	_	1	depth (sharp contact)			1		F
1	_	1	1					ᆫ
!	8 —	}						
		1	Sand, silty, some small	1	,			E
•	-	4	gravel stringers, fair					├
ì	9	1	sorted well rounded to			1	·	
	l' -	₹	rounded F - M					-
	_	1	. 			1		
1		i	silt sand f, clayey,	clay .		•		. }
	10 —	1				į.		
l i	i -	┪	Sand F-M-C, poorly sor			1		<u> </u>
	=	1	iron staining silty gr			1		F
1	11 —	1	I increases with depth		}			<u> </u>
]	=	1		.3]	1		F
1	=	1	12	.4		1		=
]	12 -	1	1		'	1		
1	=	1	ł			· '		
l	1 =	1	1		1			ᆫ
]	13 —	}	1					F
l	=	1	1		ļ			
i	-	1	1					-
1	14 -				1	i '		二
1	- ۱٬۰۰	1	Sand, well sorted, lit	tle or		ı		<u> </u>
]	! =	₹	no silt, no gravel, gr		i	l		F
i '	l	1	subangular to well rou			I		⊢ .
ł	15	7				1		
i '	-	1	sand size decreases fr	C-E	1	1		 -
I	=	1	medium to fine		l	1		
1	16 -	1	1		l	1	l	
l	=	1	1		1]		E
ł	-	1	1		l	1		⊢
ł	17 -]	i		İ	1		<u> </u>
l	-	1				1		<u> </u> -
1	=	1	1		1	1		E
ì	-	1	1		1	1		F
1	18 -	1	1		l	!		<u> </u>
1	=	4	1		i	1		F
1	=		Silt, sand % increasing	*		1		E
!	19 -	4	1 3314, 3313 4 110103311			1	Ì	F
1	=	1	1			1	l	E
j	20	1			l	1		F
<u></u>			Sand (Cont)			L	<u> </u>	
FMC FORM					PROJECT			HOLE NO.

		- T	NÝISIÓN	IMSTALL	ATION		neie Ne.	SHEET 2	3
DRILL	ING LO	G	1					OF 2 SHEETS	1
PROJECT					MO TYPE				1
LOCATION	7.0			II. BATO	M FOR EL	EVATION	SHOMM (TREE - MST.)		1
. EUCHTION	(12. MAHU	FACTURE	R'S DESIG	HATION OF BRILL		1
DAILLING	AGENCY]
HOLE HO.	(Aa ahaw		ring title	13. TOTA	L NO. OF	OVER- ES TAKE	HOISTURGEO	UNDISTURBED	
			AFTAM2	IA TOTA	-	CORE	OXES		1
NAME OF	MILLER				ATION GA			,	1
DIRECTION	-	ě.		14. DATE		STA	AT CO CO	MPLETED	1
- VERTIC		HCFIME	0 064. FROM VERT.			i_			4
. THICKHES		ROURD	C44		ATION TO				-
. DEPTH OR	-	TO 900	×		TURE OF		FOR SORING		i
. TOTAL DE	PTH OF	HOLE	27.5						1
ELEVATION	DEPTH	LEGEM	CLAMIFICATION OF MATERIA		& CORE	BOX OR EAMPLE NO.	REMAR (Drilling time, water	KS Lions, death of	
			1		PAY	MQ.	(Driffling time, water meastwelling, etc., i	il significant	
	Z0 =		Sand, F-H, Fe (Cont)						F
-	- 3		staining and Fe bands, grayish-pink silt I dec			İ			F
	21		w/depth						F
Ì	\equiv								E
],,_∃		Black organics w/Fe sta	inine					E
}	22 =		1						E
	\exists								Ε
	23-								E
- {]								E
	٠, Ξ			i					F
	24								E
- 1	=		l	1					Е
	25								E
			ì						F
	٦, ـــ		1						F
	26								E
	\equiv								F
ĺ	27 —		,	į					F
1	\exists								E
	28		Bottom of hole						E
	' " ⊐		27.5						E
	=								E
				ì					
			1						E
			1						上
j			į						=
İ	=		1						F
-									F
1									Ē
									F
	3								E
									E
		1							E
		í							E
	=	1							E
	=	1				1			E
		1							L
	=								E
	=	1							F
		1							F
	=	}							F
		1		1			1		F
	-	1			!				F
	=	1				1			F
	=	}		'	1				=
	=	3			<u> </u>				F
	-	3	1	į					F
	=	3				i			F
		1					<u> </u>		F
NG FORM	10.24				PROJECT			HOLE HO	

DOI:	LING LO	G O	VISION	METALL	ATIOM			OF 2 SHEETS
L PROJECT		<u>~</u>		APG	AND TYPE	OF BIT		
		<u>e A</u> ≓GA		IV. BAY	JE FOR EL	EVATION	THE PROPERTY BEGINS	
Fire T	(C	530	(ies)	12 104.00	S ACTIO	B'S DECI	MATION OF DRILL	
x14213	AGENCY	J 30					d Rotary)	1
				18. 707	AL NO. OF	OVER-	DISTURGED	UNDISTURBED
HOLE NO.	(As are a		AFTAM3	<u> </u>			 	1
L HAME OF	DRILLER				ATION G			
Konec L DIRECTIO	ny							MPLETED
W VERTI			044. PROM VERT.	M. DATI	E HOLE	10	-06-89 1	0-08-89
7. THICKNES				17. ELE	ATION TO	P OF HO	£ 57.33	
7. THICKNES							FOR SORING	
. TOTAL DE			25.0		ATURE OF	(MPLEC!	Paul Luc	as .
ELEVATION				u	FORE	BOX OR SAMPLE HO.	REMAI	IKS
FLEAVIOR	DEPIR	4	(Perentpitus)		BAY	no.	(Drifting time, mail	li elguitteant
		<u> </u>						-
	=		Silt Clayey					F
	1 _							ļ.
į	=							F
	, =					t l		F
	2 —					1 1		E
	=							E
	3 —					[E
	=							<u> </u>
1								E
	1		Clay I increasing					E
	7]		<u> </u>
	5 —							E
			6)					E
	1, 4		Clayey					<u> </u>
	6							E
	=		Silty Clayey					Ŀ
	7							È
	=							‡
j	۳.							
								E
ļ	_ =		Sand, F-M, well rounded					E
	9 -		well sorted, clayey, g			l i		t t
	i 3							ļ:
i	10							ļ.
- [=							F
	11							Þ
	''							ļ
	コ							ļ.
	12-	İ						4
	=							‡
	اــرا			1		i 1		ļ
1	=					i		ţ
	=	i		ĺ				F
ļ	14			l				Ē
]	=							E
i	15-7					1		F
}								<u> </u>
}	٦, ٦		Sand silt and clay % is	40 reas	e,			E
	16-3		no gravel					E
	\exists							į.
	17-							‡
i	=							ţ
- 1	18-			j				‡
1	[° .	1						ţ
	= =							‡
	19-							ļ
	,,, 🗆		(05)					F
	20 -		(Cont)			,		r

										14014 1	SHEET		٦.
DRIL	LING LO	×G o	IVIEION				INSTAL	ATION			Gr 2	SHEETS	1
I. PROJECT							10. SIZE	AND TYP	E OF 817				1
							IT. DAY	UN FOR EL	EVATION	SHOWN (TEM	E (3)		1
2 LOCATION	i (Geardin						12 MAN	UFACTURE	EN'S DESI	GNATION OF DRI			-
1 DAILLING	AGENCY						1						
4 HOLE NO.	(An about		na ude	,			IS. TOT	AL NO. OF	OVER-	DIST JREED	(MOIS	TURBED	1
					FTAM3		<u> </u>	AL HUMBE					1
L HAME OF	DRILLER							VATION GI					1
& DIRECTIO	H OF POL	.ε					 			ATEO	COMPLET	E0	1
- YERTH			·		DE6. FRQ	M VERT.	M. DAT	E HOLE			<u>i</u>	,	1
7. THICKHES	5 0F 0V						17. ELE	VATION TO	OF OF HO	LE 57.33			1
S. DEPTH DE												1	1
S. TOTAL DE			25	.0			70. SIGN	ATURE OF	IMBPECT	OH.			1
					ATION OF	MATERIA		s cone	BOX OR	Re	MARKS		1
ELEVATION		CEGENO	1		(Deserves			MECOV-	BOX OR MEPLE NO.	(Drilling time		ingerit of	1
		•	 		(Coi	at)		<u> </u>	- 				士
1	=		1		(No chai	nge)		}					E
	21		l					ł	İ				上
			1					l					E
1			ĺ					l					F
1	22		Ī										F
	3							1					E
	23							l	1				上
1 1	7 =												F
	=												F
	24-							l					F
	=												F
1	25_]				F
1	1 7		Bott	tom of	hole								F
			25.5	5									F
	26-												F
1 1	=												F
													ᆮ
1 1	=												F
1	╡							İ					F
	=								l i				F
ł	- 7												F
1	\exists												E
1 1	3							-					E
1 1	\equiv												E
1 [- 1											E
i !	3												E
	=												느
	mhahanhanhan												
1 1	3												E
	∄							į l					L
	⇉	1											F
	=======================================	. }											F
	⇉												F
1 1	ュ	1											F
	=												F
	hudun	[F
	==							,					F
	7												F
													F
	_=												E
	\exists												E
	=								}				Ε
													E
	3												E
1	. 3								i				E
)	3							}					E
	3							l					E
FMG FORM	<u></u>		L					PROJECT	L	L	HO	. E HQ.	
ENG FORM	1836	PREVIOU	16 EOI T	1004 ARE	-	€.		1			1		

C-6

(TRAFFLUCER",

	1110 1 1	- T	HAIRION	MSTAL	ATTON			SHEET 1	٦
DRILL I. PROJECT	ING LO	~				APG		OF ? SHEETS	4
	rainin	0 ATG:	•	11. BAT	AND TYPE	EVATION	SHOWH (THM - MSL)		1
Fire Tr	(Cound by	m en 4	(aglan)	1					
x14230	y63	517		1			GNATION OF DRILL		
UFC				11.181 10 TOT	AL NO. OF	OVER-	Rotary)	UNDITURGED	-
A HOLE NO.	(As also m	n en d e	A DTAM!				(H)		4
& HAME OF	DRILLER		AFTAM4	-	AL HUMBE				4
Konecny				IL ELE	VATION GE			MPLETED	4
B DIRECTION			D DEG. FROM VERT.	M. DAT	E HOLE	1		0/13/89	_]
				17. ELE	VATION TO]
7. THICKHES 6. DEPTH OR							Y FOR BORING		
. TOTAL DE			30.6	19. SIGN	ATURE OF	INSPECT	Paul Luca	٥	
				44	& CORE	BOX OR	REMAR	K S	1
ELEVATION		LEGEN	CLASSIFICATION OF MATERIA		ERY	BUX OR SAMPLE NO.	Ording this, were weathering, etc.,	e less, depth of if augnifican.3	
•		÷	Silty clayey		•	 			士
	=		brown to tan			l			E
	1					ŀ			上
	` =	1			l				F
	_ =				i	1			F
	2 —		1		l	1			F
		1			l	1			F
	3 —	1			1				二
		1				ĺ			F
	_ =	1	İ		}				F
	^ =				1				F
	=	1							F
	5 —	1	1		l				F
	_ =	1	1						=
	, =								F
	٠	1	1		1	İ			F
	=		1		!				F
	7 —		Silt, trace of sand		•				F
	\equiv	}	trace of gravel		l				Е
	8					1			E
į	,								E
	=		ļ						E
	9 —	1	1		l	}			=
. 1						1			F
	10-		Sand, F-M						F
)	- 3								E
	11-		Siley arayal						E
	=		Silty, gravel						=
	=								F
	12-	,							F
	=	1]			F
	13-								E
	=	}	ì						E
	14 =								E
						•			E
	_ =	1							E
	15								E
l i]					1			E
	16	1	1						上
		1							E
	=	1							F
	17 —					!			-
		1							F
	18 -								上
	7	1	Sand, F-M,						F
	=]	very silty dry						E
	19 =	}							E
	20	1	(Cont)						E
ENG FORM		1	1 (Cont.)		PROJECT		L	HOLE NO.	

							11014 (101	AF IA	
Deut	JNG LO	G ON	/(\$iQel	INSTALL	MOITA	4.00		SHEET 2	
PROJECT	and LO			10 2125	AND TYPE	APG		OF 2 SHEETS	
							THOUNT THE - MIL	, 	
LOCATION	(Coardin	100 or \$10	(fer)	L					
	10000000			12. MANU	FACTURE	H. P DEZIG	MATION OF DRILL		
DRILLING	AGENCY				. MO	OVE	DISTURBED	I UNDISTURBED	
HOLE NO.	(A a also m		ed title	BURG	EN SAMPL	OVER- ES TAKES	•		
			AFTAMA	14. TOT	L HUMBE	-	OXES		
NAME OF						-			
Kone	N OF HOL			H. DATE		187 40	140 jc		
- VERTI	CAL []	HC L M C O	DEG. FROM VERT.						
. THICKNES	S OF OVE	RRUSOS				P OF HOL			
. DEPTH DE						INSPECT	FOR BORING		
TOTAL DE			30.6	19. SIGNA	ITORE OF	INSPECT	94		
				4.5	1 CORE	BOX OR	REMA	RKS	
ELEVATION	DEPTH	FEGENO	CLASSIFICATION OF MATERIA			BOX OR SAMPLE HO.	(Dretter time and	er loss, depth of , if eignificand	
•	20 -		(Cont) sand		•				-
	1 =		(Cont) sand			1		F	
	=				ľ			F	:
	21 -]]		=	_
	=							E	:
	١,, =					1 1		E	
	22 =							E	:
	=			1		1 1		F	:
	23 —							F	_
	= =							F	•
	=							E	:
	24					!!		F	-
] =							=	:
i	l							E	-
	25							E	•
	=					\		F	
	26							-	_
	=							F	_
	=								-
	27 —		Sand, silty, M-C			1			
			gravel			1		E	-
	-	}	_			1		F	-
	28 -					1		F	_
	=					}		F	-
	29 -	1				1		F	_
	=	1			1	1			-
	=	1			1	1			_
	30	1	ĺ			Į.		t.	_
	=	1	Bottom of hole		ì	1		E	-
	١., =]	30.6		}			E	-
	31 =	}			1	1		F	-
	=	1	j		j			F	=
	_	1				1	}	_	_
	=	1			l		Į	-	_
ļ	1 =	1	Į.			1		E	=
		i i	İ			į.	<u> </u>	E	_
	=	}	į		Ì		ļ	E	_
	=	7						F	=
	=	1	1		1)	Ì	F	-
	=	1	1					-	-
ì		1	ì		1		1	<u> </u>	_
1		1			1	1	1	E	_
1	i =	1			1	1	1	t	_
l	-	3			1		ļ	<u> </u>	
1	1 -	j	1		}	1	1	F	_
]	-	3	į.		1		1	F	_
1	1 -	7			1]		ļ:	_
1	1 :	7			Ī	1		E	
]	1 -	Ⅎ]	1		E	_
t	1 -	1			1			E	
1		<u> </u>			1	1	<u> </u>	<u> </u>	_
1	-	4	1				1	F	_
1	} :	3	1		1	1	}	F	-
1	;	7	1			ļ	1	#	-
ENG FOR	M 19 24		DUS EDITIONS ARE DESCLETE.		PROJEC	Ť		HOLE NO.	-

AFTA-M5 METALLATION SHEET SHEET 1 OF 2 SHEETS DIVISION DRILLING LOG APG 11. BATUM FOR ELEVATION SHOWN (TON ... HEL) Fire Training Area X14445 V63219 12 MANUFACTURER'S DESIGNATION OF DRILL Pating ISAN (Mud ROTATY)
13. TOTAL NO OF OVERBURDEN SAMPLES TAKEN 14. TOTAL NUMBER CORE BOXES AME OF DRILLER IL ELEVATION GROUND WATER Konechy DIRECTION OF HOLE COMPLETED 16. DATE HOLE 10/27/89 10/25/89 TYERTICAL DINCLINED. 61.26 IT. ELEVATION TOP OF HOLE THICKNESS OF OVERBURDEN IS. TOTAL CORE RECOVERY FOR SORING DEPTH DRILLED INTO ROCK Paul Lucas TOTAL DEPTH OF HOLE L CORE BOX OR RECOVERABLE ERV HO. CLASSIFICATION OF MAYERIALS REMARKS
(Drilling time, replay loss, depth of seathering, ris., If elemiticans) ELEVATION DEPTH LEGENO Silt, clay, little or no sand 111111 tan Silt, sandy M-C little gravel clay dark gray 10 Sand, F-M silt gravel unconsolidated dark gray brown organics 13 15 Same as above with clay nodules 16 Sand F-M-C silt unconsolidated 17 dark brown organics 18 19 Gravel 1 increases

(Cont)

ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE.

PROJECT

		10	IVISION				IMSTALL	ATION			11010 110.	SHEET	2	1
DRILL	ING LO							APG				of 2	SHEETS	1
. PROJECT							10. SIZE	AND TYPE	OF BIT]
LOCATION	76						11. BAY	JH FOR E	EVATION	SHOWN?	THE WILL	,		1
							12. MAN	UFACTURE	A'S DESI	GNATION	OF DRILL			ł
3. DRILLING	AGENCY						L					1		
. HOLE NO.	(40 040	n en ere=	and title				11. TOT	AL NO. OF DEN SAMPI	OVER- LES TAKE	H DISTU		CHI DI S	TURSED	
and fills bee				AF	TAM5		14. TOT	AL HUMBE	R CORE I	OXES				
								VATION GE	IQUNO WA	TER				
S. DIRECTION						_	16. DAT	E HOLE	107.4	RYED	100	DEPLET	C O	
- VERTIC	: * -	HCFINE	۰		DE6. *	106 VERT.	17 51 51	VATION TO	0 0 HO	w 61	.26			l
7. THICKNES								AL CORE					3	
. DEPTH DR								ATURE OF						
. TOTAL DE	PTH OF	HOLE	34.3				L							4
ELEVATION	DEPTH	LEGENC	۱ °	LAME	(December	F MATERIA	NLS	RECOV	BOX OR SAMPLE NO.	(Prets	REWA ne time, mel- meting, etc.,	RKS or loca, s	degith of	l
	•	-	ļ.,		<u> </u>			-	1					_
	=		(San	ıd)	(Cont)				Ì				=
	٦, ٦													F
1	21-		1					į		l				=
1	=							İ						F
	22		1]	i .					<u> </u>
1	7													F
	- =		1											E
1	23-		Same	88 8	bove b	ut								=
-	⊣		grav	el 🛚	decrea	ses								F
	24		with	dept	b				1					二
	=		1		•					İ				=
	=						1							F
	25													=
}	7		ļ											F
}	26		Sand	F−H,	silty	color	change		İ					二
	3				to dar	k promi								F
-	27.		grav											F
	"'∃		0.84	410										=
1	=													E
	28-		1											E
1	=							1						E
	29													E
	<u> </u>		1						,					E
-	⇉									Ì				Е
l	30 -													
İ	=		1											
-	31 —													上
1	=		1											E
1	., =													E
1	32 -													=
1	⊣									1				F
	33									l				二
	=								1					F
	34 🖃		<u></u>					1	1					F
	7		Sand	, F-M,	well.	rounded		}	1					E
			fine	inc	reasi	rounded silty ov	erali	l						E
	35 —	 	 			. <u>-</u>								E
	=		Bot 1		hole				1	1				E
. [(٠٠,٠٠	,				1	1					<u></u>
	. 7		1						1					_
	=		1											<u>_</u>
		1												_
		1						1	1	l				E
		1												_
	=	1	1						1					F
	-	1												=
	_	}								1				-
	=	}												F
ENG FORM	19 27		٠			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		PROJECT	<u></u>	<u> </u>		THO	LE NO.	

		10	NVISION	INSTALL	HOTTA			SHELT 1	1
DRILL	ING LO	G T		1	APG			OF 2 SHEETS	1
PROJECT				16. SIZE	AND TYPE	E OF BIT]
Fire Tr	ainine	Area		TI. BAY	IN FOR EL	EVATION	SHOWN (TON - MSL)		1
LOCATION	(Coordin	alos er S	(ation)	12 242		M. C. O. C. L.	GNATION OF DRILL		ł
DRILLING	AGENCY			7			Rotary)		İ
WES				IN TOT	L NO. OF	OVER-	DISTURBED	UNGISTURSED	1
HOLE HO.	(A a always		AFTAM6	SURT	DEN SAMPI	LES TARE	N I	<u></u>	Į
NAME OF					L HUMBE				1
Konecny				18. ELEV	ATION GE				l
LOIRECTIO	OF HOL			H. DATE	HOLE			- (00 (00	ĺ
T VERTIC	:AL []	MC F IM E	0 0ES. PROL VERT.	ļ	ATION TO			0/28/89	1
. THICKNES	5 OF OVE	ROURD	EN				<u> </u>		1
DEPTH OR	ILLED M	TO 800	×		ATURE OF		Y FOR BORING		
, TOTAL DE	PTH OF	HOLE	34.0				Paul Lucas		
	DEPTH		C	Ē	S CORE	BOX OR SAMPLE NO.	REMA	KS	}
ELEVATION		LEGEN	(Decorption)			HO.	(Delling time, unit	If elanticars	l
		-							
- 1			Silty Clay		ľ	•			E
	. =		1						F
	1		I						F
j		}	1						F
	2 _		i			1			<u></u>
	٠ =		1			1		i	E.
			1						F
	3 —	ĺ	į		l				—
	_ =		1						F
	_ =	İ	1						E
	4 —	İ				1			_
	=		1						Е
	, =	l	1						F
	5 —	1							F
	_ =	1	Ì						F
İ	6	İ							<u> </u>
	` <u>=</u>	l							E
ļ	=		i						
	7	ł	l						
	=					•			Е
- 1	_ =	l							F
1	8 —	l							F
1		1	İ						=
	9	1				İ			=
	· =	İ							= '
	_	ł				!			_
	10	l							F
	_	ĺ				j i			=
	=	1							F
	11					1			
1	_								E
	,, =	<u></u>	<u> </u>						E
}	12-		Sand F-M-C, silty, gra	ve)	:				E
1	=	1	poorly sorted	,					F
	13-	1	unconsolidated	-		ì			F
1		1							F
	=	1	1			[E
	14-	ł	1						<u> </u>
l						1			E
	,, =					}			E
į	15	1				ļ			F
	=					1			F
-	16								二
					1	[F
									E
Ì	17 -								<u> </u>
	-	1							F
	_					ļ			F
	18	1	1						—
	=	1					!		E
		i				ļ			<u> </u>
	19 =	ł		į]			<u> </u>
	l., =	}				l			F
	20 -	1	(Cont)		PROJECT			1401 5 770	
NG FORM	1836		NIS POLYIONS ARE ORSOLETE.	- 1	LEGISCI			HOLE NO.	

							Hele No.	AFTA-M6	
DRILL	ING LO		NVISION	INSTALL	MOTFA			SHEET 2 OF 2 SHEETS	1
ROJECT				10. SIZE	AND TYP	E OF BIT		100 2 SHEETS	1
HOITASO	·/C		(()	II. DAY	UM FOR ET	EVATION	उस्त्वस (१७४ 🕳 स्ट्रा)		1
				12. MAM	UFACTUR	ER'S DESI	GNATION OF DRILL	· · · · · · · · · · · · · · · · · · ·	1
PHILLING				12 707	AL NO. OF	OVER.	DISTURSED	UNDISTURBED	ł
HOLE NO.	(As show	-	AFTAM6	BUR	AL NO. OF DEN SAMP	LES TARE	#		
HAME OF	DRILLER		. (12.1.2.)		AL HUMBE				┨
DIRECTIO	N OF HOL				E HOLE			WPC4140	ł
-VERTI	CAL []	MCL IN E	0 DEG. FROM VERT.		VATION TO				ł
THICKHES							Y FOR BORING		1
TOTAL DE				IS. SIGN	ATURE OF	INSPECT	OA .		1
			34.0 CLASSIFICATION OF MATERIA		& CORE	BOX OR	_ REMAR	IKS	1
EVATION .	DEPTH	LEGEN	(Procertation)	_	ERY	BOX OR SAMPLE HO.	(Drilling time, main meastering, etc.,	r lasa, depth of U rignificant	
		-	(Cont)		Ť				=
			Sand F-M-C, silty, grablack organics	velly,					E
	21—				1				F
	\exists								E
	22		Sand F-M, well rounded						E
	=		silty gravelly, well s	orted	Ì				F
	23-				ļ				E
	7	1							F
	24-								E
	11								E
	25								
									E
	26-								E
	3								E
	27		Silty % increasing						E
									F
	28-		Gravel size increasing			1			E
	1 =								E
	29								E
	1 =								E
	30								E
	, ~ ⊐								=
],,]								E
	31 =		Sand P-M-C						E
	J.,_ <u> </u>		silty gravel large cobble						F
	32 =		Prover Targe Connie						E
	Ι., Ξ								F
	33-								E
	=								F
	34		Bottom of hole						E
1	_ =		34.0						E
	35 —								E
	=								E
	\exists								E
	=								E
	7								F
	=								E
	=								=
	=								E
	=	1							F
	=	1							E

THE THE PARTY OF T

ENG FORM 1836 PREVIOUS EDITIONS ARE OBSCLETE.

		10	WISION	INSTALL	ATION			SHEET 1
DRILL	ING LO	s ∣″	· · · · · · · · · · · · · · · · · · ·		APG			OF 2 SHEETS
I. PROJECT				10. SI.E	AHD TYP	C OF BIT		
Fire Tr	aining	Area		II. BAT	IN FOR EL	EVATION	SHOWH (TEM - MSL)	
2. LOCATION	(Coorden	atoa or S:	ation	L				
x14808	y633						GNATION OF DAILL	
WES	AGENCY			Fa1	ling l	500 (M	d Rotary)	UNDISTURBED
4. HOLE NO.	(An alex		eng cicle	13. TOT	AL NO. OF DEN SAMP	LES TARE	THE STATE OF THE S	
and file ma			AFTAM7	1	-	- CORT	OXES	
S. HAME OF	DRILLER				ATION G			
Konecny				18. 222				MPLETED
S. DIRECTIO			D DEB. PROM VERT.	M. DAT	E HOLE			1/27/89
(X) VERTI	د <i>د</i> ر ا			17. 54.5	VATION TO			
7. THICKNES	4 OF OVE	REUROE	M				Y FOR BORING	
S. DEPTH DE	11LLED 18	TO ROC	K		ATURE OF			
S. TOTAL DE	PTH OF	HOLE	32.5	1			Paul Lucas	
				4.6	& CORE	BOX OR	REMAR	KS
ELEVATION	DEPTH	LEGENO	CLASSIFICATION OF MATERIA	_	S CORE	BOX OR MAPLE HO.	(Delling time, mate	e lose, depth of if olgalitears)
	•	•	4		•	<u> </u>		
	_	}	Silt, little clay,		1	1		t
1	=		little or no sand		1	j	1	į.
	1	1	brown to tan		l	1	j	F
!		\$			ł	1	ł	t
[=					İ		F
l	1 ,	1	1			j		t
1	2 -	1	1			ì	l	+
,	=	ļ	1	į	Ì	l		ļ.
	, -	}			ļ	1		t
1	3	1				l	1	F
1	=	1	1	İ		I	i	į.
[.	l. =	1	1			1	ļ	t
1	4	}	1		l	1	1	F
1	=	<u> </u>	10072			l		Ė
	=	}	Silt, sand % increasing			l		-
1	5	1	M-C, clayey			İ		ļ.
1	=	j				1	Ì	Ŀ
1	=	1				1		-
ł	6 -	1	i			ł		F
1	=	i	İ			1		Ŀ
1	=	ŀ	1			1		<u> </u>
1	7 -	1		j		1		ļ.
1		İ						L L
	=		1					-
1	8		Sand, F-M-C, poorly sor	ted,		1		F
	_	1	unconsolidated gravel,			ł		Ŀ
1	=	l	silt I increasing			1		F
I	9	1		1		l		<u> </u>
1 1	-	Į.			t			E
1	-	Ì						F
1	10		Silt, sand F-M-C, poorl sorted, unconsolidated,	Υ		!		Ė
1 :			sorted, unconsolidated,	no		l		ŀ
		l	gravel, tight			1		F
1	11-		Sand, F-M-C, poorly sor	ted.		l		Ŀ
]	-		unconsolidated	,		1		F
1	=	I						1
!	12-	l	Į		i '			E
	-		Į.			1]	E
1	=	1				ł		F
	13	1	Silt and gravel % incre	ase				
1			with depth			1		Ŀ
	=	ļ	1			1		F
	14	1	1			l		ļ.
1	=	1	1	1		1	Ī	E
	-	[l	l	F
	15	Į				ł		<u> </u>
1		1	1			1		E
	- =	1	Organia costs			İ	}	F
1 1	16-		Organic stain			1		ļ.
, I	-	İ	1			!		E
1	=	1	1		1	l		F
]	17	1	1					E
]	-		1			1		F
1	=	1	\			1		<u> </u>
1	18-	1	1			1		E
	=	1	1			ĺ		F
1		1	Black organics			1		L.
1	19-	1	Prack Organizes		!	ł		Ŀ
1	=					l		F
	20 =	1	(Cont)			1		t:
ENG FORM		<u> </u>	1 (0/44)		PROJECT	<u> </u>	L	HOLE NO.

							***************************************	WITH UI	_	
DRILL	JNG LO		Attron	INSTALI	HOITA			OF 2 SHEETS		
I. PROJECT				10. SIZE	AND TYP	E OF BIT			1	
				11. DAYON FOR ECEVATION SHOWN (TEM - MRZ.)					1	
L LOCATION (Coordinaton or Finism)					12. MANUFACTURER'S DESIGNATION OF DRILL					
E DRILLING AGENCY					12. mandy actioner's Designation of Unice					
4. HOLE NO. (As about an drowing Mile)					13. TOTAL NO. OF OVER- DISTURBED UNDISTURBED BURDEN SAMPLES TAKEN					
and Me ma			AFTAH7	14. TOTAL HUNDER CORE BOXES						
L HAME OF	DRILLER			IS. ELEVATION GROUND WATER						
4. DIRECTIO	-	.t		ISTARTED COMPLETED						
-		HCL!HE0		IG. DATE HOLE						
7. THICKNES	5 OF OVE	ROURDE	H	17. ELEVATION TOP OF HOLE 59.52						
A. DEPTH OR	4LLED 14	TO ROCK		18. TOTAL CORE RECOVERY FOR BORING 1. 19. SIGNATURE OF INSPECTOR						
. TOTAL DE	PT4 0F	HOLE	32.5	1						
ELEVATION	DEPTH	LEGENO	CLAMIFICATION OF MATERIA (Description)	u	RECOV	SAMPLE NO.	(Draing the mic mathema, etc.,	RKS H Jose, depth of		
		٠	<u> </u>		•	10	**************************************	il signilisand	L	
	=		(Cont)			1			E	
İ	=		Sand, F-M, well sorted						E	
	21-		well rounded to subang			1			-	
			silt I decreases with		1	1			F	
·	22		yellow brown, no grave	1	ł				上	
	- =				ř				F	
	_ :								E	
}	23									
l					l				F	
į	24				İ				E	
	• =] ;			E	
	=					1			E	
	25		Sand, F-M-C, poorly so	rted					E	
	\exists	i	silty, gravel, unconso		d				E	
į	26								E	
	Ξ,								E	
İ	=		Sand F-M, well rounded						E	
	27		silt % increases	,					E	
	_ =		no gravel						E	
	28			1					E	
	-~ 								E	
	=								E	
	29									
	= =		Sand, F-M-C, poorly so	rted,		}			E	
	30		well rounded, little s	ilt,					上	
			no gravel						E	
ĺ	=								F	
1	ᄁᅼ								F	
-	⇉								F	
	32-		Gravel appearance						L	
1	7								F	
1	,,,∃		Bottom of hole						F	
	33-		32.5						F	
ļ	3								F	
l	34						•		E	
	\exists								E	
									E	
- 1	\exists								E	
	Ⅎ						•		E	
- 1	4									
	=								F	
ļ									上	
	⇉								E	
	=								=	
	=								=	
į	_ =								F	
	=								<u></u>	
	=								F	
	_ =								F	
ENG FORM	1974				PROJECT	-		HOLE NO.	<u> </u>	

	_							11010 110.	SHEET 1	١
Deni	INC.	LO		/ISION	IMSYALL		PC:		OF 2 SHEETS	
DRILLING LOG					IN. SIZE AND TYPE OF BIT					l
Fire Training Area					II. DATUM FOR ELEVATION SHOWN (TEN & MIL)					
LOCATION (Coordinates or Statism)					12. MANUFACTURER'S DESIGNATION OF DRILL					
x15018 y63395						ng 150	0 (Mud	Rotary)		
WES					13. TOTA	L NO. OF	CVER-	DISTURBED N	UNDISTURGED	
AFTAMS						L HUMBE		<u> </u>		ĺ
NAME OF DRILLER						ATION GR				l
Konecny	1 OF	HOL			4 01-				OMPLETED	1
-				DES. FROM VERT.	12/1/89 12/3/89					
. THICKNES	105	ave	REVESE	•	17. ELEVATION TOP OF HOLE 59.39					ĺ
. DEPTH DR					M. TOTAL CORE RECOVERY FOR BORING 3					
TOTAL DE	PTH	07	HOLE	32.5	1			Paul Luca	8	l
ELEVATION	Della	-TH	LEGEND	CLASSIFICATION OF MATERIA	4.5	S CORE	BOX OR SAMPLE NO.	REMA (Drelling time, west speathering, etc.	RKS for loca, depth of	
•				(2444		ERV.	HO.	machine, etc.	. Il algnificano	L
		\exists		Silt, clay & decreasing	1					_
		7		with depth brown to tan]		j	=
1	1	_		prown to tan					į	
ļ		=			•				j	E
	2	=								<u></u>
	_						} •			F
İ		=					1			F
	3	_								<u> </u>
	l	=								<u></u>
		=								<u></u>
	-	_								F
	ŀ	Ξ				1	ł			E
	5	=					l			=
		=			•	1	}			F
	6						ł			二
	ľ	=		Gravel % increases			l			=
		=		0.2.6.2 2 226.62945			ţ			F
	7	_		Sand C, very silty, poo	orly		į .			F
		_		sorted, tight, brick re	l	ł			F	
	8	_		green gray clay nodules	•		1			E
	1	Ξ		Fe staining		1	1	}		E
		_					1	j		E
	9					ĺ				E
]	=				}]	1		E
	10	_		Sand, F-M-C, silty, li	ttle		}			=
		_		or no gravel			1	[i	F
	11			Fe staining, little or	no	I	1	1		E
		=	1	clay Silt I increases with	depth]				E
	١. ـ	Ξ		Sand C, I increases with						E
	12	_		depth		l				E
'	1	_]			}	Ì]		E
	13	_	}							F
		=				1		1		F
	14					l		1		二
	١.٦	Ξ		Silt, little or no san	d,			1		F
ı		_		Sand F-M-C, poorly sor	ted	1		1		F
	15		1	gravel % increasing sl	ightly	1		1		F
	1	=	1	silt % increasing slig		}		1		F
	16		1			1	1	1		E
		=]	Silt lense]		}		E
	١,,	_]	1211f Tense		1		1		E
	17	-	}			1				E
	ĺ.,	=	})		1		F
	18	_	4							=
		=		Brick red clay nodul	es			1		F
	19		1			1	1			F-
	1	=	1	Silt, little or no sam	ď.	1				E
	20	=	1	gravel, tight (Co						E
ENG FORM			PREVIO	US EDITIONS ARE DESOLETE.		PROJECT	7		HOLE NO.	

								11010 1	SHEET Z	٦ .		
DRILL	ING LO		VISION		INSTALL	ATION			OF 2 SHEETS			
I. PROJECT					10. SIZE	AND TYPE	OF 8.5]		
	.,		-/- 1		11. DAY	H FOR EL	HOITAVS.	SHOWN (TEM 4)	er)	1		
1. LOCATION	(Coordin	ates or \$44			12. MANL	FACTURE	R'S DESIG	MATION OF DRIL	 	1		
S. DRILLING	AGENCY								UNDISTURBED	4		
4. HOLE NO.	(Aa aham		4 4110	Ţ 	13. TOTA	L NO. OF	OVER-	N OISTURBED	University of the second secon			
L HAME OF				AFTAM8	14. TOT	L HUMBE	R CORE	OXES]		
E RAME OF	MILLER					ATION OF	OUND WA	TER]		
4. DIRECTION					IS. DATE HOLE							
VERTIC	·	HC L IN 60		DEG. FROM VERT.			20 40	L€ 59.39	1	1		
7. THICKNES	s of ove	LROUMOE	1					Y FOR BURING	1	1		
4. DEPTH CR						ATURE OF				1		
S. TOTAL DE	PTH OF	HOLE	32.5		i				****	┨		
ELEVATION	DEPTH	LEGENO	(CLASSIFICATION OF MATERIA (Department)	u	S CORE RECOV- ERY	BOX OR SAMPLE NO.	(Delling time	MARKS mater loos, depth of No., if eignifeand			
		-				•	1			╄-		
	=	1		d F-M-C, poorly sor	ted					F		
		1		t, some gravel onsolidated						F		
i	21-	1	unc	ONBOILGACEA						E		
	=]								E		
	22-] [E		
	_]	G	ravel % increasing						E		
	22]								上		
	23-									F		
	=	1								F		
	24											
	=	ļ	San	d F-M, well sorted,						F		
İ	29	1		1 rounded, silty, g						上		
		1		onsolidated						F		
	1	1	(25	.5 black organic st	ain)					F		
	26	1								=		
	=	1								F		
	27-	1								F		
	=		S1	lt % increases						F		
	=	1 1	_	avel % decreases						F		
	28-									E		
	-		San	d F-H, well sorted,	silt,					E		
	29]	БÔ	gravel, organic sta	ins					E		
	_	i					1			E		
	30-						l			上		
	30 =			avel I increases						F		
	_		01	WAST & INCICAGES						F		
	31_									F		
	=	1					Ì			F		
	32									F		
	- - -					,				E		
		}	32.	tom of hole						E		
	33		34.							E		
]								E		
	34	1										
										F		
	_	1										
	=	1								=		
	=	1								F		
		1								F		
		i l					'			E		
]								E		
	,	<u>i</u> i					ļ			E		
	=	1					1			E		
!	=	1								F		
i !	=	1								=		
		1					1			-		
	=	}								F		
ENG ECON		1	Ц	TIONS ARE DESCLETS.		PROJECT	ļ	<u> </u>	HOLE HO.	二		
ENV FUKM	12 27								[114.6 2 114.			

		76	IVISION		THATA	LATION		∏ole fig.	AFTA-	
DRIL	LING L	0G T				APG			o # 2	-
I. PROJECT					10. MZ	W WO TY	E OF 84T			
Fire LOCATION	Train	ing Ar	ea		11. 34	TUM FOR 2	LEVATIO	H SHOWN (TWM ME)	,	ļ
x151	96 v	63459			12. WA	MEFACTUR	EA'S DES	GNATION OF DRILL		
E ONILLING	AGENCY				F2()	line 15	00 (Muc	Rotary)	1	
A HOLE HO.	(Aa aba		ene tivi e		12 TO	TAL NO. O	LES TAK		UNDIST	-
L HAME OF				AFTAM9	14 701	TAL HUMB	ER CORE	BOXES	<u> </u>	
Kone		•				EVATION O				
& DIRECTIO	H OF HOL				M. DA	7E HOLE	1	•	WETE TE	
₩ YEATI	car 🗆		· —						11/30/	89
7. THICKHES	15 OF OVE	ERBURDE	H			EVATION T	~			
S. DEPTH DE	HLLED H	ITO ROCE				NATURE O		Y FOR BORING		
S. TOTAL DE	EPTH OF	HOLE	33.5					Paul Luca	6	
ELEVATION	DEPTH	LEGENO	•	CLASSIFICATION OF MATERIA	u	3 CORE	BOX OR SAMPLE NO.	(Crating the me	IKS	m a a l
				4		ERY	NO.	(Drilling time, and	H elemilie	are)
	_		Sil	t, clay tan to yello	ow.	1		 		
	=	1		wn iron staining			1			F
	1 -	1	gra.	vel stringers		İ	ļ	İ		F
	=	1				ļ	1	1		F
	1, =	}	l			1	1	1		F
	2 =					1	1	ł		F
	=						1			F
]	3 —	i	1			1	1	ł		上
			1			1	1	İ		E
			G	ravel pea size and l	large	I				느
	4 -					1)			<u> </u>
	=					ł				E
1	5-7					ł				上
].				E
}	=					1				ᄂ
1	٥ 🗖		\$a	and I increasing		l				<u></u>
ì	ヿ	1				1	1 1			=
	7-7		Sand				i I			上
	· =	- 1				1				E
	⊣		B	rick red clay nodule	: 5	i				E
·	8-7	1				Ì				=
	=	1								E
	ب ہو	- 1				l				
1	´ 7	- 1		ravel % increasing		i .	1 1			F
	⇉			ilt I decreasing						E
i	10			lack organic stain		ŀ				
į	7		5	and % increasing						=
1	11-7	i								上
1	7		5	ilty lense						F
1	=	- 1					}			F
ĺ	12 =	- 1								=
i	\exists	I			l					F
1	13-		G1	ravel I decreasing						上
1	\exists	- 1	Sand.	, F-M-C, poorly sort	ed.					F
	Ε,,	1		y, gravel, unconsoli		1				F
	143	1	iron	ataining		l	ľ			F
	Ⅎ	- 1			1		' 			F
	15-	- }				1	Ī			F
1	\exists	1			[I			F
1	E_{λ}	- 1			Ì	I	1			F
1	16-	ļ			-	ļ	- 1			F
- 1	Ⅎ]	j	- 1			F
1	17	j			- 1	ł	ŀ			F
[3					[ł			F
j	18				1	; !	İ			F
	E.,		0	ravel % increasing	- 1		ł			=
1	∃.	7-	01	arer a mercastik	1		- 1			F
į	19						- 1			—
	∃⁻	7				- (- 1			F
	20 🗦		Sand	(Cont)						F
NG FORM 1	836 -	REVIOUS	EDITIO	MS ARE DESCLETE.	1	PROJECT			HOLE	MQ.

Heie No. AFTA-M9 MSTALL ATION SHEET Z DRILLING LOG OF 2 SHEETS 10. MZE AND TYPE OF BIT TI. DATUM FOR ELEVATION SHOWN (TRM as MIL) 2. LOCATION (Countinates or Station) 12. MANUFACTURER'S DESIGNATION OF DRILL & DRILLING AGENCY 13. TOTAL NO OF OVER-BURDEN SAMPLES TAKEN 4. HOLE NO. (As alsom an drawing title AFTAM9 14. TOTAL NUMBER CORE BOXES E HAME OF DRILLER IS. ELEVATION GROUND WATER & DIRECTION OF HOLE M. DATE HOLE THERTICAL TINCLINED ---17. ELEVATION TOP OF HOLE 7. THICKNESS OF OVERSURDEN 16. TOTAL CORE RECOVERY FOR BORING 19. SIGNATURE OF INSPECTOR DEPTH DRILLED INTO ROCK S. TOTAL DEPTH OF HOLE REMARKS
(Drilling time, maler less, depth of precisering, etc., if eignificant) CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGENO (Cont) Sand F-M, fairly well sorted, silty, unconsolidated, red brown 21 22 --Gravel % increase --- Iron stained band 23 24 Sand F-M-C, coarse increasing, silt % increasing, unconsolidated, little or no gravel 25 Silt, sandy 26 Sand, F-M-C, poorly sorted, silty, gravel unconsolidated 27 28 -Gravel % decreases 29 -Silty lense gray 30 Sand F-M, fairly well sorted, black organics, little gravel, silty lense gray, 'unconsolidated Bottom of hole 33.5

C-18

ENG FORM 1836 PREVIOUS EDITIONS ARE OBSOLETE.

		16	NVISION	INSTAL	ATION		11010 11	SHCET 1	1
	LING LO	G		1	AP			OF 2 SHEETS	1
. PROJECT	r==1-1-			M. TE	MIO TYPE	E OF BIT	THOUGH (1884 - H	BQ	1
LOCATION	raini:	alea er öl	a (44)	1					1
x14446	y 6.	2836					MATION OF DALL		
WES	AGENCY			Fall	ine 15	OO (Muc	Rotary)	UNDISTURBED	1
-	(Ac above	-	and title	-	DEN SAMP	OVER- LEE TAKE	*		1
HAME OF			AFTAM10			A CORE .			1
Koneci				-	VATION G	TOUNG WA			1
DIRECTIO		•		14 DAT	EHOLE	1		10/14/89	1
- VERTI	cw 🗀	HCLIME	D DEG. PROM YERT.	· J		P OF HOL	<u>)/13/89</u>	10/14/09	1
THICKHES	\$ OF OVE		IN				r con soning		1
DEPTH DE						INSPECT			1
TOTAL DE	PTH OF	40LE	37.5				Paul Li		ĺ
LEVATION	DEST	LEGEN	CLASSIFICATION OF NATERI	ALS	S CORE	SOX OR SAMPLE NO.	(Deciling time, 1	MARKS major loos, dapth of	1
4		4	(Discountian)		EAY	HO.	weethering, o	mier loss, dapth of is, it elemificant	L
			Silt, clayey						F
			sand increases with d	epth	1	1 1			F
	, =		trace of gravel		-				F
	1 =		•		i				F
	=				I	1 1			F
	2				l	} i			Ľ
					l				E
	=				1				F
	3				l				F
			1		!				F
	,] !			F
	=				1	i			F
	=	ĺ			1				F
	5								E
	=				l	1 1			E
	- =				l				Ł
	6 =		i		l	1			Ł
					[E
	7 -		į.		l				E
	=								F
	=				1	i I			F
	8 -				l	1			F
					l	i I			F
	9 _		Silt and clay decre	ase	l				F
	1		with depth		1	1			F
	=				l				F
	10				l	1 1			F
			1		l				F
	Ι,,Ξ		Gravel % decrease		ł	1 1			F
	11-3		-Araver & decrease						F
	3				ļ				F
i	12-		Sand F-M, silty clayer	,]			Þ
	\exists		trace of gravel		i				F
i	٦,,,		_		1				þ
ļ	13-				1				t
	=				l				E
	14								E
- 1									F
j			1			! !			F
	15		!						F
- 1	\exists		1			1			F
- 1	٦,, ⊒		1		1				þ
	16-								F
			Gravel % increases		1				t
ļ	17-		Graver & Increases						E
1	7								E
l	٦,, ٦		}						E
1	18-								F
l	=								F
	19								F
									F
	۱ ,, 🗆		Cravel 7 decreases /	Conti		ļ			F
	20 =		Cravel 7 decreases (711	PROJECT			HOLE HO.	_

,									Hele		TA-		_
DRIL	LING L	oc '	AIRION			INSTAL	LATION				EET ?	2 SHEETS	
I. PROJECT						10. SIZI	E AND TY	- OF BIT		100	<u> </u>		7
						TI. DAY	UNIFORE	EEVAYIO	H SHOWN (TWN -	HEL)			1
2 LOCATIO	M (C omd e	antes er St	at ion)			11 545		FR'S OF	IGNATION OF ORI				4
1 DAILLING	AGENCY	,							Or OH				
4. HOLE NO.	· (Ag ak)	n es e	24 1140			13. 101	AL HO O	FOVER-		UN	01571		1
44 8/0 8				AFTAMIO						<u> </u>			4
L HAME OF	DRILLES	ı						ROUND T					┨
4. DIRECTIO	H OF HO	CE							ARTED	COMPL		·	4
- VERTI	-	WCL MEG	·	056. 780	W VERT.	IS. DAT	E HOLE			<u>i </u>			_
7. THICKNES	LA OF OVE	ERBUROE	<u> </u>			17. ELE	VATION T	OP OF HO	LE 63.21]
4. DEPTH DE									Y FOR SORING				4
S. TOTAL DE			37.5	· · · · · · · · · · · · · · · · · · ·		10. SIGN	MTURE O	F INSPEC	TOR				i
ELEVATION		T			MATERIA		& CORE	BOX OR	Re	MARKS			1
1	ł .	1		AMSIFICATION OF	→	_		SOX OR	(Drilling time,	maler be NC., II of	به خدر جوزانو	articles and	1
		<u> </u>	(Cont				 •	 '-	 	1			╀
	_	1	(COBL	,			ł	1					F
	21	}	Silt	clayey, sand	F cl		Ī		ł				F
	=			se with dep		-, -	}	1					F
	=			•					l				F
	22 —]							ļ				F
	=								1				F
]	23—	1						ļ					F
1	1 =						1						F
i !		1 1											F
1	24						i						F
							1	1					F
	25						l						F
	17 =			, well sort	ed, s1	lty	}						E
ł				of gravel	4		1						Ε
	26		DITCE	red clay no	duter								
l j	=						ŀ						E
	27												E
1	''′ ♯			ilty sand F	-H-C								E
1	=======================================		gravel	•									Ε
	28												E
1	コ												Е
	29	Í											E
	~ =	- 1											E
	⇉		Gra	vel % decre	ASP								Ε
	30 ==	- 1	•			1							E
	コ	- 1											E
	31	- 1				- 1							E
	~ =	1				- 1							E
	=	1				- 1		[]					E
1	32 7	- 1				Į							\vdash
	7	l											E
Ĺ	33-	1				į							上
	7												E
	,, =	l				l			,				E
	34 =	ł				- 1							
i	\exists	i				l							F
Į	35	j				İ							F
!	3	ŀ				į							F
I	36	1				1							F
- 1	~ <u> </u>	l				- 1							=
1	Ⅎ	ļ				- 1		1				l	F
- !	37	1						- 1					_
	E							ł					=
1	E.			of hole				1					=
1	38 -]	1	37.5					1					_
1	\exists	1				Ì		1				- 1	_
	\exists	1				l		1				1	_
- 1	\exists	1				1		I				- 1	=
		l										1	_
NG FORM	18 36		-	S ARE 0000LETE			PROJECT			l H)LE 1		

			NV-Sion	INSTAL	LATION		1014 (4	SHEET]	٦
L PROJECT	LING LO	<u> </u>		 		ΛFG		OF 2 SHEETS	늬
1		Area		II. DAY	AND TYP	CEAYLOR	SHOWN (TEN -)	BZ.)	\dashv
LOCATIO			(a) (av)	<u> </u>					_
x14251	AGEHCY	<u>, </u>					GNATION OF DAIL d Rotary)	•	1
WES	. (As above		rine title	13. TOT	AL HC. OF	OVER-	d Rotary)	UNDISTURBED	7
			AFTAH11			IN CORE !			\dashv
L HANE OF						BOUND BY			\dashv
& DIRECTIO	₩ 0# HO	Le			E HOLE	1874	MTED	COMPLETED	\dashv
☐ VERT	CAL [INCLINE	0 066. FROM VERT.				1/21/89	11/_2/89	4
7. THICKNES	14 OF OV	ERBURDE	(A)			of of Ho			-
a. DEPTH D	RILLED II	TO ROC	K			INSPECT	Y FOR BORING		4
S. TOTAL DE	EPTH OF	HOLE	26.0	L	,	-	Paul Lu		4
ELF" ATION	DEPTH	LEGENC	CLASSIFICATION OF MATERIA	4	AECONE	SAMPLE NO.	(Drilling Issue, w	IARKS wier loos, depth of s., if eignificant	
<u> </u>	•	-	 • _ • _ • _ • _ • _ • _ • _ • _ • 		<u> </u>	1			4
	=	1	Silt, clayey dark brow tan	n to	1				F
	Ι, Ξ		·a''						F
	l, <u> </u>	}			l				E
] =	}	•		1				E
	2 -	l							E
	=				1				E
	3								F
					•	1 1			E
	=								F
	4 =					i l			F
	=								F
	5 —		Silt sand MC, clayey br						F
	╛		Jill sand he, clayey of	J-1.					E
	6 =								E
i	l" ≓	'							
	. =								F
	7 =		Gravel % increases						F
	=		Graver a Increases	1					E
1	8 ==								F
1	7				ļ	1			F
ł	9 —			- 1					E
	= =				ļ				E
}	10-7								E
]	· ·			- 1]				E
ĺ	. 7			-	1	į			F
[113								F
İ	3		Sand, F-M-C, poorly sor	ted	İ				F
-	12-	- 1	silt, gravel	-	İ	ĺ			E
- 1	3	ł		- 1	Ì	- 1			E
1	13			}	l	- 1			E
1	<u> </u>		Sand, F-H-C, silty						E
1			no gravel	ļ		1			F
1	14-			1	ŀ				F
	\exists	İ		l	ł				E
1	15-		Gravel % increasing	- 1	- 1				E
1	ゴ	- 1		1	- 1	- 1			E
	16-	-		l		}			二
į	3			İ	1	1			E
ļ	1,—]	- 1		l	ļ				E
	" ‡	j		Ì	-			i	E
	⇉				į	-			E
!	18				1	- 1			=
j	7							ļ	F
-	19-		Sand Famer construes			-		ļ	<u> </u>
	Ε		Sand, F-M-C, poorly sor	rea	ļ			Ì	F
	₂₀ =		(Cont)						F
NG FORM	836 .	REVIOU	EDITIONS ARE DESCRIPTE.	1	HOIECT			FOLE NO.	

DRIL	LING L	og (DIVISION	IMSTAL	LATION			SHEET 2	
L PROJECT				10. SIZ	E AND TY	APC FE OF BIT	~~	OF 2 SHEET	4
L LOCATIO	H (Camera		(444)	11. 821	UL FOR	CEVATIO	H SHOWN (THE - MEL	J	
3. DRILLING				12. MAN	UFACTU	164.2 DEZ	GHATION OF DRILL		{
				19. 701	AL HO. O	FOVER-	DISTUMBED	UNDISTURBED	-
4. HOLE NO.	. (As 		AFTAM11					<u> </u>	4
L HAME OF	DAILLEA					ER CORE			\dashv
6. DIMECTIC				IS. DAT	E HOLE	187	ATED CO		\dashv
				}		OF OF HO	LE 54.18		-
7. THICKNES 4. DEPTH DI				16. TOT	AL CORE	RECOVER	Y FOR BORING	-,,	7
S. TOTAL O			26.0	19. SIGN	ATURE O	F INSPECT	OM		7
ELEVATION	DEPTH	LEGENC	CLASSIFICATION OF MATERIA	us	S CORE	BOX OR SAMPLE HO.	Charles A Remai	iks	1
•		٠	1		EAY	HO.	(Drilling time, male speciment, etc.,	il electioned	
	=		(Cont)			1			E
	21 =		Sand, gravel, silt, or coating (19' to 19.5')						F
	21 =		brown						E
	,, =					1			E
	22 =								E
	;								E
	23-								F
ĺ	_ =			į	•				E
	24=		Organics						=
	=								E
	25=		Interbedded with lenses	of					F
	_ =		well sorted sand F-M (23.4-26.0)						E
	26		Bottom of hole						
	=		26.0						E
i	E								-
-	∃								E
[\exists			- 1					E
	Ξ			-					F
1	\equiv								E
	ساساساسا								F
-	\exists	1		ſ					F
	∃								E
	Ξ								F
1	∃								F
- 1	7	}		- 1					E
1	=	ł		ļ					F
İ	E			i					F
-	Ξ	l							
	日	- 1		ĺ					E
	╡	1							E
	\exists			1					E
	=	l							E
	\exists					1			
1	Ξ			1	İ	Ì			E
	크								E
	∃								F
	뒥]	ļ			E
	=	1							F
-	7								E
	3								E
G FORM 1	836	REVIOUS	EDITIONS ARE ORSOLETE.		TOJECT			HOLE NO.	二
-AR 71			(TRANSLUCENT)	1				I	

								Here No-	AFIA-FILE	,
DRILL	ING LO	C O	AIRIOM		INSTALL		PG		OF 2 SHEETS	İ
I. PROJECT					10. SAIE	AND TYP	OF 817			
Fire Tra	aining	Ares			TI. BAY	IN FOR EL	EVATION	SHOWN (TEM - MCL.		
x14513	7643	200 - 8 0 73	-		iz MANI	FACTURE	A'S OES	GHATION OF DRILL		
DRILLING					F-414	ine 150	O (Mud	Rotary)		
WES	(40.000			,	13. TOT	L NO. OF	OVER-	DISTURBED	CREMOTERONS	
				AFTAM12		LL HUMFE				
A HAME OF						ATION GE				
Konecny	1 OF HOL						1874		PLETED	
VERTIC			·	DE6. FROM YERT.	14. DAT1				1/24/89	į
7. THICKNES	s of ove	ROURDE	×			ATION TO				
. DEPTH OF						L CORE P		Y FOR BORING		1
. TOTAL DE	PTH OF	HOLE	27.5	>				Paul Lucas		İ
ELEVATION	05674	LEGENO	-	CLASSIFICATION OF MATERIA	L.	S CORE	BOX OR SAMPLE NO-	(Dellar inc. mi	RKS	
•	6			(Description)		ERY	MO.	(Drilling time, mar- mentioning, etc.,	II elgnitteanti	<u>.</u>
			Silt	t, trace of clay						=
i	=	ĺ		m to tan						Ξ
1	1 =	}	1							_
	_ =		ļ						ŀ	_
	_ =		}						1	=
j	2 —		1						ļ	_
J	=									Ξ
	3 -						1		Į.	=
}	` T		<u>\$</u>	Sand I increases			1		ľ	Ξ
	=					,				Ē
- 1	4 -		1							_
	=	1						:	l l	Ξ
1	5	}				,		1		_
	=				1					
	, =			Stiff, tight					1	_
	° =									_
1			i							_
1	7 —		1	d and gravel I						_
}			inci	reasing	ſ				1	=
}	8 —									_
1	Ť				1				1	Ε
	. =		-330	d, silt, F-#-C		'				=
1	9 ==			onsolidated, little					j	
	=		gra	vel, poorly sorted	l					=
	10					!			1	_
j	=				į				- 1	=
1	11-3		1			:			ļ	_
1	· =				ı				ļ	Ξ
}	=		l		1		!		F	Ĩ
1	12]		ł						•	_
1	3			Silt % increase	Ì				Ī	_
ſ	13-			gravel I increasing					ł	_
}	=		۱ '	with depth	1				1	_
,	14		1						ł	_
	·~ =		s	ilt % decrease					1	_
Į				ravel % increase	- 1				ŀ	=
1	15-								ŀ	_
1	\exists		l						· · · · · · · · · · · · · · · · · · ·	Ξ
[16				- [_
1	E			ilt % increase	-				· · · · · · · · · · · · · · · · · · ·	=
ļ	,,=			ravel % decrease					į.	-
1	17 =			rganic stains	J				ļ	_
j				ark brown	1	ì			1	_
ł	18-					ļ			ļ	
1	⇉		_		}					=
	19-		0	rganic stain						
1	7									=
	20 =			(Cont)						_
NG FORM	1836	PREVIOL	15 EDIT	IONE ARE DESCRIPTE.		PROJECT			HOLE NO.	
MAR 71									•	

							11414 714.		_
DRILI	LING LO	os l'	DIAITION	INSTAL	LATION			MEET 2	. 1
. PROJECT				10 SUZI	-	- OF BIT		OF 2 SHEETS	-
			·	II. BAT	UN FOR E	LEVATION	I SHOWN (THE - ME	3	-
L LOCATION	(Cardin	==== + 1	(rection)	1					
DRILLING	408464	,		12. MAR	UFACTUR	ER'S DESI	GNATION OF DRILL		1
	AGENCI								1
HOLE NO.	(As also		and and	12 207	AL NO. O	PLES TAKE		UNDISTURBED	1
			AFTAM12	14 701	AL NUMB	ER CORE	POXES		1
L NAME OF	DRICLER				VATION G				1
L DIRECTIO	4 OF HOL	. €		 				OMPLE740	-1
- VERTI	CAL []	MCL ME	DEE. FROM VERT.	IE. DAT	E HOLE				1
. THICKHES				17. ELE	VATION T	OP OF HO	LE 55.27		7
. DEPTH OF				14. TOT	AL COME	RECOVER	Y FOR BORING	1	.1
			· · · · · · · · · · · · · · · · · · ·	19. SIGI	O BRUTAL	FINSPECT	ro n		1
. TOTAL DE	PTHOP	HOLE	27.5	L	_				4
ELEVATION	DEPTH	LEGEM	CLASSIFICATION OF MATERIA	LS	RECOV	SAMPLE NG.	(Drilling time, see Seathering, ols.	AKS Her boos, depth of	1
•			1		-	N G.	-readering era	, il eignilisam)	1
			(Cont) Sand			1			F
	- 7		gravel % decrease		1	1 .			E
	21-		iron stain		ì	1			L
	· · =		1202 2022		}				E
	コ				1	1			F
ļ	22		Little or no gravel		1				F
j	. 7		iron staining		1]			F
					1				F
	23		1		1				
ĺ	Ⅎ		Silt decreasing w/d	epth	1				E
1	,		1		1	1			F
l	24-3								F
!	⊣					1			F
į	25-				1				上
- 1	-~ 				}	1 1			E
l	=								F
1	26		Silt % increasing		1	1 1			F
i					į .	1 1			F
}	=		ļ			1 1			F
	27				l	1 1			F
	=		Brown organic stain		į.	j i			ł-
	28-		Bottom of hole			1 1			F
- 1	-° ∃		27.5		ļ	1			F
- 1					!	1 1			F
	-			j	l] [ㄷ
1	7		1						E
i	⊣								E
1	7		ł						E
1	⊐								E
į	コ		1						F
j	コ		l						F
1	\exists		l			l f			E
- 1									L
-	⊣								F
- 1	_ =		l					į	F
-	\exists				1			İ	
- 1	=			1				İ	E
	コ		1						E
- 1	⇉							ļ	E
- 1	ュ			l				,	F
									_
1	3			ļ					F
i	\exists								F
1	\exists			1				İ	_
-	⇉				İ	1			-
l	ゴ				ł				<u>_</u>
1	⇉				1				F
1	Ⅎ			ĺ	-				F
1				1	1	1			<u> </u>
1	\exists								=
1	F			ļ		1			F
1	7			İ		ļ			<u></u>
	7					l			E
C FOR					ليسيي	l	-		E
IG FURM) MAR'/I	836	PREVIOU	IS EDITIONS ARE OBSOLETE.	ĺ	PROJECT			HOLE NO.	
			(TRANSLUCENT)					•	

APG DRILLING LOG OF 5 SHEETS PROJECT M. SIZE AND TYPE OF BIT Fire Training Area LOCATION (Company or States
X1-809 y6339) 12. MANUFACTURER'S DESIGNATION OF DRILL Failing 1500 (Mud Rotary) 18. TOTAL NO. OF OVER-SURGER SAMPLES TAKEN WES HOLE NO. (As about an around still AFTA-B1 IL TOTAL HUMBER CORE BOXES
IS ELEVATION GROUND WATER NAME OF DRILLER Konecny 16. DATE HOLE TYERTICAL DINCLINED 9/8/89 9/13/89 17. ELEVATION TOP OF HOLE 58.99 . THICKHESS OF OVERBURDEN IS. TOTAL CORE RECOVERY FOR BORING IS. SIGNATURE OF INSPECTOR S. DEPTH DRILLED INTO ROCK S. TOTAL DEPTH OF HOLE Paul Lucas REMARKS
(Delling time, under tone, depth of unastrottes, ote., if significant) CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND Silt, trace of clay, trace of gravel, brown to dark yellow brown Gravel stringer Silt, trace of clay, sand C, iron staining Cravel and sand % increasing Sand, silty, trace of clay, M-C, well rounded to angular, poorly sorted, iron staining Silty sand band with iron staining Sand F-M, clayey, gravel lenses Thin clay lense Sand, clayey, silty, F-M-C gravel, interbedded lenses of fine silty sand well sorted (Cont) ENG FOR 4 1836 PREVIOUS EDITIONS ARE DESOLETE

		10	NVISION	INSTAL	ATION		11414 1	SHEET 2	٦
DRIL	LING LO	76		D 5179	AND TYP	- 00 817		OF 5 SHEETS	4
							N SHOWN (788 2	-1L)	1
2. LOCATION				12. HAH	UFACTUR	EA . 3EI	GHATION OF DRIE		1
3. DRILLING				12. 707	AL NO. OF	OVER-	GISTURGED	UNDISTURBED	4
A HOLE NO.	(A e electrical and e	-	AFTA-B1		AL NO. OF DEH SAMP		EH		4
S. HAME OF	DRILLER				AL NUESE				1
& DIRECTIO			DES. FROM VERT.	HL DAT	E HOLE	***	44.50	COMPLETED	1
7. THICKNES				17. ELE	VATION T	OP OF HC	LE 58.99	i .	1
6. DEPTH DE					AL CORE		Y FOR BORING		4
S. TOTAL DE	PTH OF	HOLE	81.5	<u> </u>					4
ELEVATION		LEGENO	1-1111	u	S CORE RECOV- ERY	SAMPLE HO.	(Driffing rises,	MARKS under leas, depth of the id significant	1
· ·		- •			•	 '			上
	=		Clay, silty			1			E
	21		Silty fine sand, VF-F well rounded, well sort	ed,					E
	=		iron staining, thin				1		F
	22		black laminated clay le	ense:					E
	=								E
	23								E
									E
	24_		1			1			E
	=								E
	25_								
	\exists		Sand F-H, rounded to						E
	26		angular, silty gravel X creasing with depth	in-		}			느
	=		poorly sorted,						E
	27		clay silt nodules,			-			上
	=		organics; black silt laminations;						E
	28=		iron staining						=
	=								E
}	29-								E
	╡								E
	30-								E
	╡								E
	31-			į					E
ļ	⇉								F
ĺ	32-								E
-	=								F
1	ᄁᅼ								
	耳		Sand F-M-C, coarse with depth, red; clay nodule:	. 1					F
1	34		(brick red); some grave	1,					E
l	. =		*ilty						Ε
	35-			1					F
-	_,∃		thin black laminated si	, [E
	36-		thin black laminated si lense						F
	∃								E
Ì	"님								=
	Ξ								E
- 1	38-			1					=
	39 =			-					E
l	~=			1		l			=
	40 H		(Cont)]					E
NG FORM			, , , , , , , , , , , , , , , , , , , ,		PROJECT			HOLE NO.	

AFTA-B1 SHEET 3 DRILLING LOG PROJECT LOCATION (Coardinates or Station) IL MANUFACTURER'S DESIGNATION OF BRILL 1 DRILLING AGENCY IS TOTAL NO. OF OVER-HOLE NO. (As shown an electric title AFTA-B1 A HAME OF DRILLER IL TOTAL HUMBER CORE BOXES IL ELEVATION GROUND WATER & DIRECTION OF HOLE STARTED ------58.99 17. ELEVATION TOP OF HOLE 7. THICKNESS OF OVERSURDEN 14. THEAL CORE RECOVERY FOR SORING . CEPTH DRILLED MTO ROCK S. TOTAL DEPTH OF HOLE RECOVE SAMPLE CLASSIFICATION OF MATERIALS ELEVATION DEPTH LESEN (Cont) Thin black laminated silt Sand, F-M, well rounded subangular, brown Fe staining, silty; gravel I increasing w/depth; poorly sorted 57 Brown organic layer 58 Gravel % decreasing (Cont) w/depth 60

ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE.

Hele No. AFTA-B1 MSTALLATION DRILLING LOG ROJECT 10. BIZE AND TYPE OF BIT LOCATION (Countmates as Station) E MANUFACTURER'S DESIGNATION OF DRILL 12 TOTAL HO. OF OVER-BURDEN SAMPLES TAKEN HOLE HO. (As about on the AFTA-B1 14. TOTAL HUMBER CORE BOXES L HAME OF DRILLER IL ELEVATION GROUND WATER DIRECTION OF HOLE COMPLETED TYERTICAL MINCLINED 17. ELEVATION TOP OF HOLE 58.99 7. THICKHESS OF OVERBURDEN 16. TOTAL CORE RECOVERY FOR BORING 16. SIGNATURE OF INSPECTOR S. DEPTH DRILLED INTO ROCK S. TOTAL DEPTH OF HOLE 81.5 REMARKS
(Drilling time, under lone, depth of westlering, etc., if eignitteend CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEN (Cont) 63 Black organic material Silt I increase Silt, clayey with some fine sand @ 74.2 ft. Clay, stiff, mottled, silty, with scattered thin silt lenses, gray; silt % decreases with depth (Cont) 80 ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE.

Hele Ne. AFTA-Bi

								Hele	100	-
DRILL	LING LO	x o	IVISIÓN		INSTAL	LATION			SHEET 5	
PROJECT					10. SIZE	AND TYP	€ OF BIT		OF 5 SHEE	
					TT. BAT	ON FOR E	CEVATIO	e shoah (Jar =	2 0	\dashv
LOCATION	(Comein	mos er It.	-		<u> </u>					_
DRILLING	AGENCY					ac run	** * 06#	GHATION OF DAI		J
HOLE	/A:		- mail 1		11. 101	AL NO. OF	OVER-	DISTURBED	UNDISTURBE	•
HOLE NO.	<u></u>			AFTA-B1						
MAME OF	DRILLER					A. HUWGE				
DIRECTION					·F EFE	VATION GI		ATER	T	_
VEATIO				DES. FROM VERT.	M. DAT	E MOLE		*****	COMPLETED	- 1
					17. ELE	-	P OF HO	LE 58.99		7
THICKNES								Y POR BORING		•
CEPTH OR					10. SIGN	ATURE OF	INSPEC	TOR		\neg
TOTAL DE			81.5	A		1.000	eox oe		MARKS	ᅱ
MOITAVE.	DEPTH	LEGENO	'	ABSIFICATION OF NATERIA (Description)		RECOV	BOX OR SAMPLE NO.	(Drilling time,	meler leas, depth of the, if sugaifies	- 1
			 	(00)		<u> </u>				-
İ	7		Clay	(Cont)				1		F
{	81 =		,				1	ł		F
Ì	7		l					1		F
l	. 7			m of hole				l		þ
	82 —		81.5				Ì	ŀ		F
- 1	コ							l		þ
i	⇉						}			Þ
- 1	ᆿ		1					l		Ł
- 1	コ							ŀ		E
1	mhalanlanh							[E
	=					1				Ŀ
- 1	ゴ	- 1				·				Ŀ
1	ᆿ	- 1								E
[[- 1				Е
}		}			1	j	j			F
- 1	3	ı								F
	3	J				- 1				Е
1	\exists	- 1			1	l	- 1			E
1	3	- 1			- 1	j				Е
1		- 1			1	- [- 1			Е
- 1		ł			1	1	ł			Ε
- 1	크	-			ı	- 1	1			Е
- {	. 그	- 1			1	- 1	- 1			Е
	コ	i			l	1	J			Е
	_=	- 1				- 1	,			E
1	⇉	1			- 1	1	1			E
1	ョ	- 1			- 1	- 1	- (
	ᆿ				- 1	ŀ	- 1			Е
- (Time	ĺ			[- 1	- 1			Ε
- 1		1			1	}	- 1			E
	=	l			- 1	- 1	Ī			Е
1	=	- 1			- }	1	ł			F
					- 1	l				F
}	7				- 1	- 1	J			F
- 1	7	- 1			- 1	- 1	- 1			F
J	ㅋ	-			1	J	i			F
1	⇉				1	1	1			F
ļ		1]	- 1]			E
	コ				- 1					H.
- 1	⇉	1			,	j	}			E
	===	1			1	.				E
1	⇉	1			- 1	- 1	1			E
					- 1	1	,			E
1	\exists	- 1			- 1	1	1			E
	3				- 1	ļ	1			F
1	7	1			1	1	- 1			F
	7					- 1	1			F
	7	1			- 1	- 1	1			F
1	7	1			ļ					F
	4	- 1			- 1	- 1	1			-
1		,			,					-

AFTA-B2 Hale No. DRILLING LOG APG PROJECT 10. SIZE AND TYPE OF BIT
TY. DAYUM FOR ELE. AYION SHOWN (TEN - MEL) Fire Training Area 12. HANGFACTURER'S DESIGNATION OF DRILL x14442 y6 3958 Failing 1500 (Mud Rotary)

13. TOTAL HO. OF OVER- DISTUNCTO
BURDEN SAMPLES TAKEN AFTA-B2 14. TOTAL HUMBER CORE BOXES Konecny 14. DATE HOLE DVERTICAL DINCLINED 17. ELEVATION TOP CF HOLE 55,54 THICKHESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING 19. SIGNATURE OF INSPECTOR DEPTH DRILLED INTO ROCK . TOTAL DEPTH OF HOLE Paul Lucas
REMARKS
(Dreffing time, motor lane, profitering, are, if eight S CORE BOX OR SAMPLE CLAMIFICATION OF MATERIALS DEPTH LEGENC ELEVATION Silt, trace of clay and sand Clay I decrease with depth Sand stringer silt I decrease sand and clay I increases with depth; some gravel Sand F-M, trace of silt and clay, some gravel 10 Thin clay and silt lenses Gravel I increases Alternating bands of sand and clay Clay lense, slightly sandy (Cont) ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE.

							Mele !		A-82
DRILL	LING LO		IVISION	INSTAL	LATION			SHEET	2 1HEET3
1. PROJECT				- 47	E AND TYP	F 04 B/T		100/	JACE 13
				11. BA	UN FOR E	CEVATIO	SHOWN (TEM -	ASL)	
2. LOCATION	(Course	ates or St	elevi	İ			•		
				12. MA	UF ACTUR	ER'S DES	GHATION OF DRI	LL	7
3 ORILLING	AGENCY								
4. HOLE NO	(As show		eng title . p.m. p.2	13, TO1	TAL NO. OI ROEN SAMP	LES TAK	D+67U# 6 E O	UN-0157	
			AFTA-B2					<u></u>	
& HAME OF	DRILLER				VATION G				
l				10. 42.			MTEO	COMPLETE	
6 DIRECTIO			DEG. FROM VERT.	16. DA1	E HOLE	•"			٠
- VERT			VIC. 7400 VII.	17 814	VATION T	00 00 HO	55	. 54	
7. THICKNES	s of ove		H				Y FOR BORING		
S. DEPTH OF		4TO #OCI	•		ATURE O				
S. TOTAL DE	EPTH OF	HOLE	122.4						
ELEVATION	05874		CLASSIFICATION OF MATERIA	LS	S COME RECOV- ERY	BOX OF	(Dettine two	MARKS	
1	ł	1	(Description)		CRY	HQ.	(Drilling time,	ea., If algorithm	
	-				 	+			— <u>-</u>
]	=	1	(Cont)		1	1			E
1	21 _	1	Sand F-M, tan, slightly silty clay seam pink,			1	ŀ		F
1	· · -	1	strey cray seam print,		1	ļ	}		F
1 1		1	Sand F-M, brown, silty,				į		E
}	22 _	1	clayey brown black visc	ous	1	ŀ	1		E
1	=====================================	}	material organics		1	l	1		F
		1	1		1	1	l		F
} 1	23	1			1	1	!		F
[]	i =	<u> </u>			1	1			E
	7	l			1	j	ļ		F
	24		Sand coarsens with depti	h	i	1	1		F
i i	11	į			1				
	., =	1			I	1			=
	25				1	l '			E
1	_					Ι,			E
	26 _	!			l	1			F
1 1	~ =		Reddish brown		Ī	İ			F
			viscous material		1	1			
i l	27					1			ᆫ
]	=				ı				E
1	I. ∃				1				E
1 1	28				l				F
	7				1	1			F
	29 🖃								
	'' ⊐				l				=
	コ				1		,		E
1	ᅍᅼ	1	Black organics		l				E
	\exists	ľ	.		1	1			F
i i	7								F
	31 🚄		Sand C black		1				F
į į	コ		Sand F-M silty, Fe stain	ing	1				F
	,, ⊐		unconsolidated		1				E
	"		grivel		1				E
	∃	İ							E
	33 I								F
	7								F
	⊣								F
	34 🗐					1			<u> </u>
	ヸ								=
j .	,, 🗆	ļ	Crausi street street	1					F
	" 극	- 1	Gravel, silty, clay nodu	164					
	ⅎ								E
	36 🗔	1				l			E
	\exists								F
	. 3	į							F
	"∃	i				ŀ			F
	=	ļ				ŀ			F
	.。コ	ì				·			E
	³⁸ ∃	1				ļ			<u> </u>
Ì	\exists	ł			Ì				F
	,, <u> </u>	i			ļ	1			F
	~ =	I							<u> </u>
	コ	ŀ		1	ļ	į			E
k	<u></u>	1	(Cont)						
ENG FORM	10 24		S EDITIONS ARE DESCLETE.		PROJECT			HOLE	40.

							Hele Ne.	AFTA-B2	_
DRILL	ING LO	VG 04	VISION	INSTALL	ATION			OF 7 SHEETS]
I. PROJECT				10 517 #	AND TYPE	OF BIT	····	TOP / SMEETS	1
				II DAY	IN FOR EL	EVATION	SHOWN (TEM - MSL)	7
2. LOCATION	(Coardin	#100 or 510	et ten)	L					1
3 ORILLING	AGENCY			IS MAN	JFACTURE	M.R DESIG	SHATION OF DAILL		
				13 707	L 10 OF	OVER-			1
A HOLE NO.	(A 		AFTA-B2		DEN SAMP	LES TARE	* !	<u>:</u>	4
S. HAME OF	DRILLER				AL HUMBE				4
				. ELE	VATIOR GE				-
6. DIRECTIO			066. FROM VERT.	16 DAT	E HOLE	1		DWPLETED	1
				17 ELE	ATION TO	P OF HO	₹ 55.54		7
7. THICKNES							Y FOR SORING	,	
S. TOTAL DE			122.4	19. SIGN	ATURE OF	INSPECT	OR		1
				<u> </u>	1 0000	90X 08	REMA	863	4
ELEVATION	DEPTH	LEGENO	,=		RECOV-	SAMPLE	(Delling time, mot	ou lune, depth of	
	-	•	!		<u> </u>	1			+-
			(Cont)						F
	41		Sand F-M, well rounded						F
			subangular, reddish bro	√n,					F
	_		silty with clay lenses deep red banding; some	oravel					E
1	42 —		January, Jame						E
	=								Е
i i	43 =								E
									E
	l 3								E
	" 4 ⊟								E
	\exists)]			E
]	45		Sand, F-M, brownish yel	low					E
1			, ,]]			E
	1 ∃					i i		•	E
	46 —								E
] 3								E
1	47					1 1			E
	1 3								E
	3								E
	48 =								_
1 1	=								E
1	49		*			į į			上
1									E
	50 _		l Cand anamana wish dans	_					=
i	" =		Sand coarsens with dept black organics	п,					F
1									F
	51								F
	7								F
	52								F
	7								F
	. 7								F
1 1	53 —								E
] =								E
	54								E
			Clav, mundy, silty, sof	t,		[F
	, -		organics,						F
1	\`` -		gray to dark gray, trac of gravel	e					-
			, Mideri						F
]	56 _								<u></u>
1	=								=
ł l	5) =		}						F
	<u> </u> " ==								-
l '									F
1	'a	1							<u></u>
1	=								F
	59	1			l	}			F
	j'' =			i					F
1	=	1							F
SHC FOR	60		(Cont)		PROJECT		L	HOLE HO	上
ENG FORM	18 36	******	US EDITIONS ARE DESCLETE		07661			-OCE NO	

AFTA-B2 Heie He. SHEET 4 DRILLING LOG PROJECT TO SIZE AND TYPE OF BIT LOCATION (Coardenates or Station) IZ MANUFACTUREN'S DESIGNATION OF DRILL DRILLING AGENCY SURDEN SAMPLES TAKEN HOLE NO. (As also un en deserred title) AFTA-B2 14 TOTAL NUMBER CORE BORES NAME OF DRILLER 4 DATE HOLE ---IT ELEVATION TOP OF HOLE 55.54 7. THICKNESS OF OVERBURDEN IS TOTAL CORE RECOVERY FOR SORING IS SIGNATURE OF INSPECTOR S. DEPTH DRILLED INTO ROCK S. TOTAL DEPTH OF HOLE 122.4 S COME BOX OR RECOV- SAMPLE ERV HQ. CLASSIFICATION OF MATERIALS REMARKS
(Drilling tipe, recer loss, depth of wantering, sta., if significant) ELEVATION DEPTH LEGEND (Cort) Sand % Increasing Sand F, rounded; clay nodules, red; trace of clay and silt Clay, very silty, with some VF sand; stiff 70 Organic laminations Very fine sand, clayer, red (Cont) ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE

Hole No. AFTA-82

DRIL	LING LO	K °	IA12104	INSTAL	LATION			OF 7 SHEETS		
1. PROJECT				10. \$12 6	AND TYP	2 0/ 817				
2. LOCATION	t (Coardin	eres or It.		TI. DATUE FOR ELEVATIO, SHOWN (THE MIL)						
3 DRILLING				12. MANUFACTURER'S VESIGNATION OF DRILL						
<u></u>				13. TOTAL NO OF OVER. DISTURBED UNDISTURBED						
4. HOLE NO.	(A + ato =	* **	AFTA-82	ļ			N .			
S. HAME OF	DRILLER		······································		AL NUMBE					
4. DIRECTIO	M OF HOL							PLETED		
- VERTI			DEC. FROM VERT.	M. DAT	E HOLE					
7. THICKNES	s of ove	ROURCE	N		VATION TO					
8. DEPTH OR	IILLED II	TO ROCK	······································		AL CORE		Y FOR BORING			
9. TOTAL DE	PTH OF	HOLE	122.4							
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF WATERIA	L	S CORE	BOX OR SAMPLE NO.	REMAR (Drilling time, mater reactioning, etc., i	AB Jana, dopth of		
<u> </u>		-	(Cont)		-	1 7	1	7 elgnitteams		
			(cont)		l			<u> </u>		
	81 =				İ	1		E		
	=				į	1		-		
	, =				1			 =		
	82 =							F		
	=]		E		
	83 —		C1-11 * 4 /					E		
	=		Clay % increasing					 		
	84]		ļ.		
								E		
	85		Stiff black clay zone]		=		
1	=		, ,					Þ		
	86 _							-		
1 1	,		Clay, stiff friable					E		
]	=		brown to red					F		
	87		micaceous					ļ=		
1	88							E		
	°° –							E		
						}		E		
	89 =		Sand, F-H, clayey-silty	,				=		
	E		well rounded					E		
1 1	90							E		
1	7							Þ		
	<u>بر</u>							=		
[]	· =							Ε		
]	<u>,</u> =		Clay, stiff, micaceous,					E		
}	⁹² 크		brown/red	ł				 =		
	_ =		i L	1				<u> </u>		
	91-4		Intermittent stringers	(thin)				E		
	<u>,</u>	1	of M-C sand, milty					-		
	94 📑			- 1						
]]	_ =	Ì						E		
	⁴⁵							<u> </u>		
	= =	l						F		
	96	1	•					E		
	=		!					E		
[97 📑			1				F		
	\equiv							F		
	98	}	i	- 1	Ì			E		
]	-							E		
	99 =							†		
l i	"							E		
	=	ļ						E		
ENC FOR:	100	1	(Cont)		400.55		······································	<u>_</u>		
ENG FORM	1836	PRE VIOU	S EDITIONS ARE GROLETE	1	PROJECT			HOLE MO		

		1 6.	VISION	MITALL	ATION		7	ET .		
	ING LO	G o	N I S I V I S				OF.	7 SHEETS		
PROJECY		***		10 512 2	AND TYP	2 OF 617				
LOCATION	(Carrelle	mine a Ši.	= 10m)	TO DAYUM FOR ECEVATION SHOWN 778M - MSL)						
				IZ MANUFACTURER'S DESIGNATION OF DRILL						
DRILLING	AGENCY						1224			
NOLE NO. (As about an around little AFTA-52					NEW SAMP	LES TARE	OISTURGED UNI			
					-	-	OXES			
				19. ELE1	ATION G					
DIRECTION OF HOLE					E HOLE	1474	RTED COMPL	E 7 E 0		
			DE4. FROM VERT	17 ELEV	ATION TO	3P OF HO	LE 55.54			
THICKHES							Y FOR BORING			
-						INSPECT				
TOTAL DE	PTH OF	HOLE	122.4	<u> </u>		147.00				
LEVATION	ì	LEGENO	CLAMIFICATION OF MATERIA	.	RECOV-	MON OR SAMPLE NO	REMARKS (Dell. seg exec, mater from measuring, etc., if etg	nilicani)		
			(Cont)		<u> </u>					
1	3		Clay	ļ						
i	101		brown to red							
-	∃									
	.,, =			-						
ļ	102			ļ				ļ		
- 1	コ			l						
}	103-			į						
j	=	}		}				}		
- 1	1043									
	=		•							
	Ξ			l				ŀ		
	105-	- 1				1				
[ヸ	- [[Ĺ		
	106	ı		- 1		i		<u> </u>		
	=	l								
Į,	ᇈ크	ĺ			ĺ	[‡		
ľ	Ξ.,							•		
- 1	3	-						-		
	108-	ļ		- 1						
	=	}		ł	- 1	ŀ		į.		
l l	109	1			I	- 1		Ė		
- 1	⇉			1	- 1	- 1		<u> </u>		
- 1,	Eon	ł		1	ľ			<u> </u>		
Ι,	- T	i		i	ı	ŀ				
- 1	\exists	- 1		- 1	Į					
ļı	111	1		- 1		- 1		ļ		
	3	- 1				- 1		F		
1	12=	į		1				F		
	\equiv	1	•	1				Ē		
İ	ⅎ	- 1			ļ	- 1		E		
l	1	- 1		-	ĺ	- [E		
	=			1				E		
ļ,	14-							Ŀ		
	7					-		þ		
1.	Ę				- 1	[F		
1	Ξ	Í		1				F		
}	Ξ	1		1	1			E		
1	15	(Color change to dark gra	v	i			E		
1	7			1	-	1		E		
] 1	17	1			1			E		
ļ	7					1		E		
,	,, 7					-		-		
]'	18	j]		- 1		Þ		
	\exists	- 1				Ì		ļ-		
1	19-							<u> </u>		
i	Ξ	1			- 1			 		
1		- 1	(Cont)	- 1	- 1	- 1		ì		

AFTA-B2

DRIL	LING LO		[VISION	HETAL	MOITA			OF 7 SHEETS			
T PROJECT				10. SIZE	AND TYP		SHOWN CTWW - MICH		1		
1. LOC AT 10	t (Courde	or Ic	-im	1							
1 DRILLING	AGENCY			12. MA4	UFACTUR	ER'S DESIG	SHATION OF DRILL		1		
1				13. TOTAL NO. OF OVER- DISTURSED UNDISTURSED							
A HOLE NO.			AFTA-B2			R CORE .	<u></u>		┨		
& HAME OF	DRILLER					ROUNO MA			1		
4. DIRECTIO				H. DAT	E HOLE	STA	4760 0		1		
				17. ELE	VATION TO	0F OF HO		. 54	1		
THICKNES				18. 101	AL CORE	ECOVER	FOR SORING	,	1		
P. TOTAL DE				19. SIGN	ATURE OF	INSPECT	0A				
ELEVATION			5: 4001015 101011 AG 1110001	4	1 CORE	BOX OR SAMPLE HO.	REMARK (PARTIES AND AND AND AND AND AND AND AND AND AND	:KI	1		
					ERY	HO.	(Delting time, water weathering, etc.,	il algolicand			
			(Cont)						E		
į į	=]			F		
	121-								F		
1	1 =				j				E		
	122								F		
	=		Bottom of hole		Ì				F		
	123		122.4								
	=								E		
									F		
l i									F		
	_ =								E		
									E		
	=								F		
						1 1			F		
									E		
j i	=								F		
									F		
	-3								E		
									E		
	=								F		
	3					{			E		
	1								E		
								•	F		
	=					İ			F		
	7								E		
	= =	- 1							F		
	E					1		İ	E		
	∃					1			Ε		
	=					1			F		
				İ					E		
				1		İ			E		
		- 1							F		
	=								E		
	\exists								E		
								!	上		
	\exists								E		
	\equiv								E		
	=								F		
]			-					E		
	\equiv							j	E		
	=								F		
	=								F		
	3			ļ					E		
ENG FORM	18 14	•==:::-	IS EDITIONS ARE GESOLETE.		PROJECT	l		HOLE NO.	1		
MAR 71	.0.70	- me AION	TE SUNTINES ARE DESOLETE.	ļ				1			

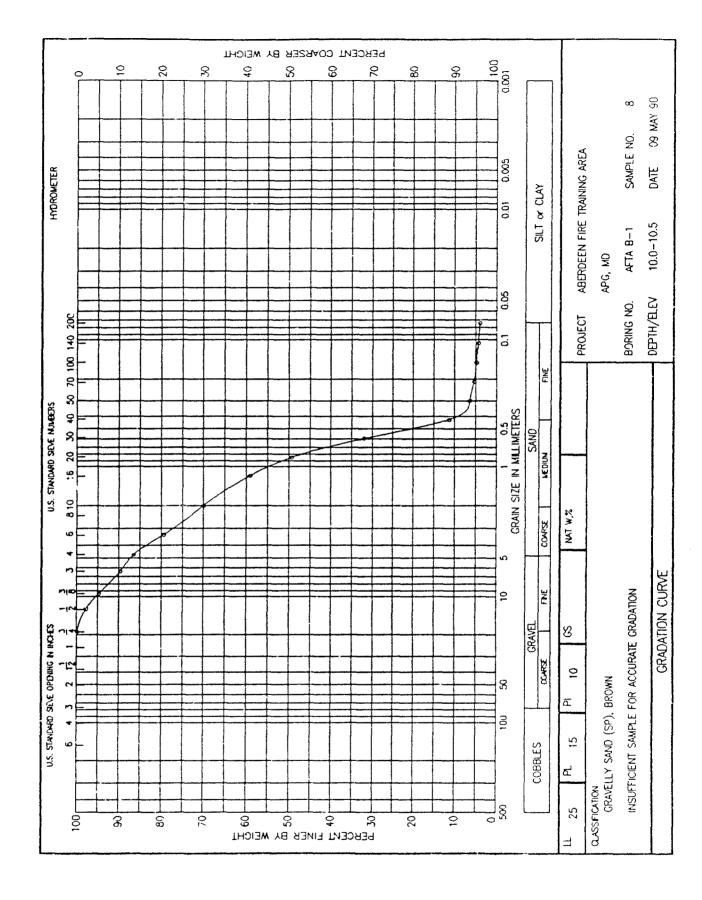
Helw No. AFTA-B3 DRILLING LOG OF 5 SHEETS APG 10. BITE AND TYPE OF BIT

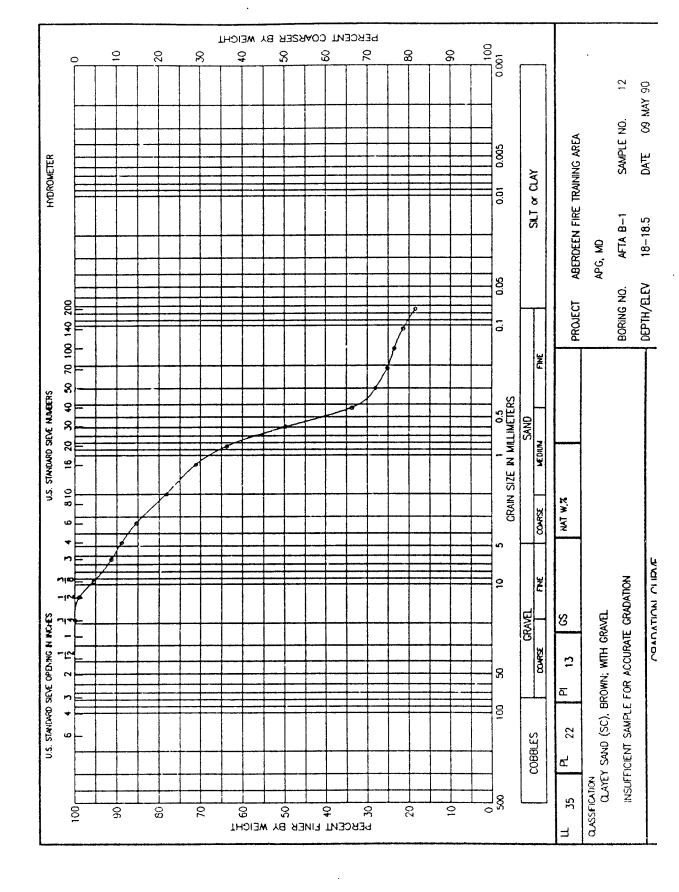
11. DATUS FOR ELEVATION SHOWS (TPW - MIL) Fire Training Area
2 COCATION (Countries or States) IZ COCATION (Countries or distinct)
X14214 V63529
3 DRILLING AGENCY
WES
4 HOLE NO. (As about an drawing little)
and file number 12. HANGFACTURER'S DESIGNATION OF DRILL Failing 1500 (Mud Rotary)
13. TOTAL NO. OF OVERSUBDEN SAMPLES TAKEN 14. TOTAL NUMBER CORE BOXES H. DATE HOLE TYERTICAL DINCLINED 17. ELEVATION TOP OF HOLE 57.08 7. THICKNESS O OVERBURDEN 19. TOTAL CORE RECOVERY FOR BORING 19. SIGNATURE OF INSPECTOR . DEPTH DRILLED INTO ROCK S. TOTAL DEFTH OF HOLE 91.0 REMARKS
(Drilling time, motor loos, depth of measuring, oft., if significant) ELEVATION GEPTH LEGEND Silt; silty-clayey; clay % increases with depth trace of fine sand Trace of gravel Sand M-C, subrounded, angu-lar, silty; trace of gravei Sand F-M-C-VC, silty-clayey with fine grained sand stringers Sand F-M, well rounded, silty-clayey, some organic laminations ENG FORM 1836 PREVIOUS EDITIONS ARE OBSOLETE.

Hele Ne. AFTA-B3 SHEET 2 OF 5 SHEETS DRILLING LOG 10. SIZE AND TYPE OF BIT LOCATION (Can 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY 4. HOLE NO. (An about on drowing side and file manhalf 13. TOTAL HO. OF OVER-BURDEN SAMPLES TAKEN 14 TOTAL NUMBER CORE BOXES 6. DIRECTION OF HOLE ---17. ELEVATION TOP OF HOLE 57.08 7. THICKNESS OF OVERSURDEN IS. TOTAL CORE RECOVERY FOR SORING IS. SIGNATURE OF INSPECTOR e. DEPTH DRILLED INTO ROCK TOTAL DEPTH OF HOLE 91.0 REMARKS
(Drilling time, under lose, depth of mediaring, ato, if eignificant) CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGENC Sand, f, subrounded, silty, trace clay 21 Silt, sandy, yellowish brown Sand F-M-C, silty, some gravel, organics, dark yellow brown Clay, trace of silt Sand F-M, silty, well rounded to subangular organics Sand F-M-C, silty sub-rounded to organic laminations (Cont) ENG FORM 1836 PREVIOUS EDITIONS ARE OSSOLETE.

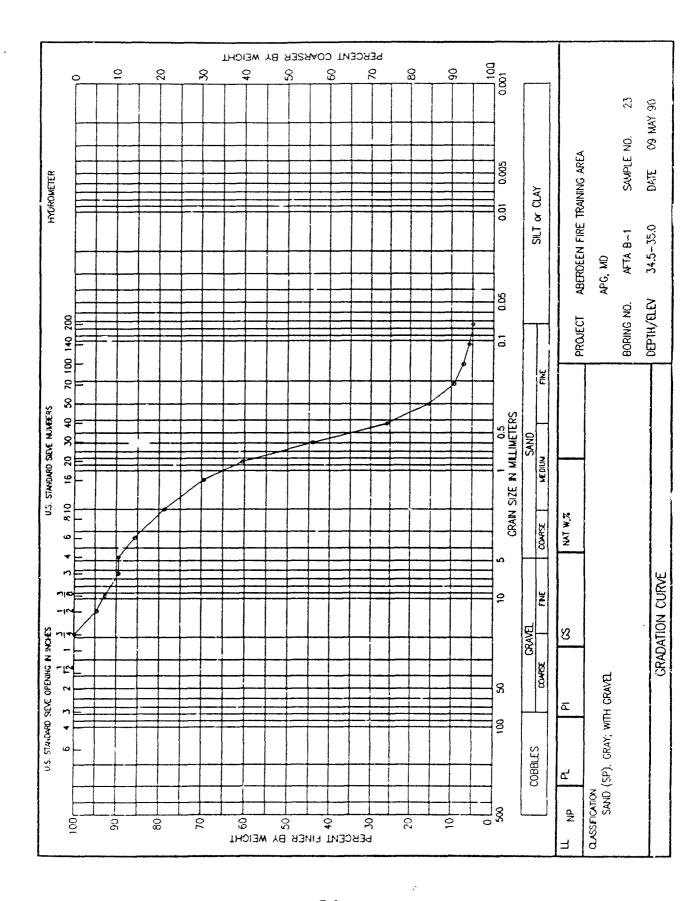
Hele No.

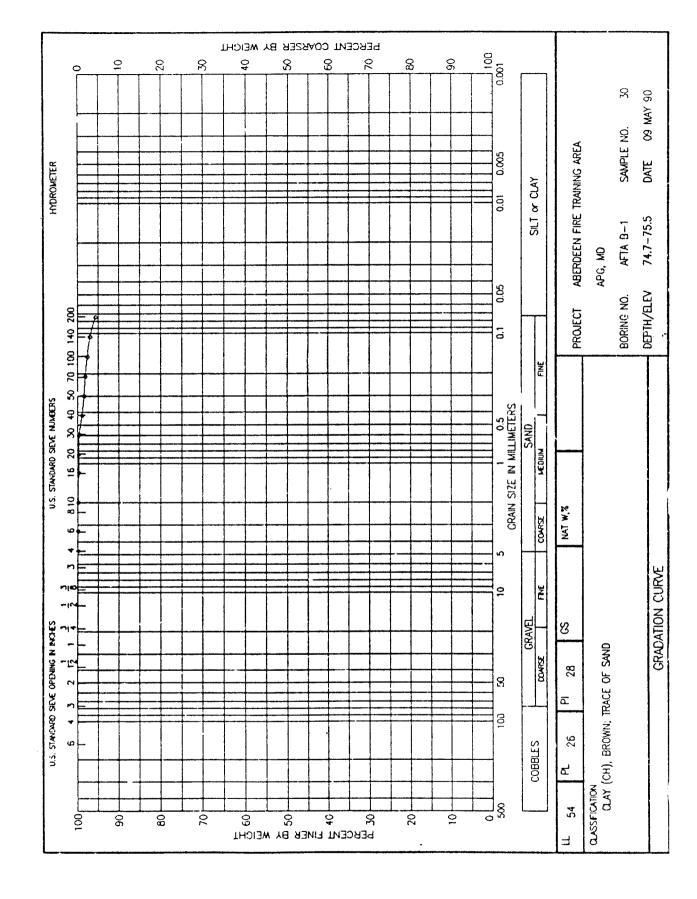
							IIGIO F	er ve en	
DRIL	LING LO	XG O	HAIFION	INSTAL	LATION			SHEET	
PROJECT		1		10. 117	AND TY	# 0F BIT		107	-
				10. SIZE AND TYPE OF BIT					
. LOCATION	(Come	4104 or 31	al (m)						
DRILLING	AGENCY			12. WARUFACTURER'S DESIGNATION OF ORILL					
				12. 107	AL NO. OF	OVER-	018TUR 8 ED	UNDIE	TURSED
HOLE HO.	(A	~	ent alle						
L HAME OF	DA LER					R CORE			
DIRECT	. но.			IL ELE	VATION G	NOUNO WA		COMPLET	
- Ver			DE6. FROM VERT.	16. DAT	E HOLE	1			••
			· · · · · · · · · · · · · · · · · · ·	17. ELE	VATION TO	OF OF HO	LE 57.0	3	
. THICK!		ROURGE					Y FOR SCRING		•
TOTAL DE			91.0	19. MGM	ATURE OF	INSPECT	OR		
					1 CORE	BOX OR	RE	MARKE	
LEVATION		LEGENO		-	HECOM	SAMPLE NO.	(Drelling time,	rai el elgriff	ingth of icans
			ļ			' '			
- 1	=		(Cont)			1			
1	/I_=				ĺ				
	41-3				}				
	,,∃]	i		
Ì	42-								
	7								
1	43 =						i :		
J	\exists		Sand, fine, I incressing	ا د د د					
	=		slightly, silty, subrous	ided,					
İ	44		no organics, Fe staining	٠. ا					
	Ξ					li			
	45_]			
1	\equiv	- 1		- 1					
ł	., ∃	- 1		- 1					
	46	1							
İ	=	- 1		i					
- 1	477	ı		- 1					
ĺ	⇉								
ł	48 =	- 1			- 1				
1	Ŧ	1		1					
1	. 3	- 1			- 1	1			i
1	49-			1	Ī	- 1			
i	ⅎ	- 1		[i				- 1
	50	1		- 1	i				- 1
i	⊐	- 1		- 1	i	- 1			- t
	🖠	- 1		- 1	- 1	1			- {
- 1	51-3			1	- 1	- 1			
I	=	- 1		ľ	- 1				
1	52	- 1		- 1	- 1	- 1			ŀ
ļ	=	- 1		- 1	1				F
	_∃				1	- 1			•
1	27			1		- 1			ļ
1	3	ſ		- 1]	1			•
	54 <u></u>				1	i			
-	E	- 1			ł	İ			F
- 1	Ε			- 1	İ	ł			F
	55-	- 1		1	I	[F
	\exists				- 1	[E
1	56				- 1	- 1			E
	\exists	,		1					Е
- 1	., ±	-		1	- 1				- 6
-	52			1					E
	=					1			Ε
	58	-		-	ŀ				E
1	E			-	i				F
1	=			}	- 1	- 1			E
į.	59.				1	1			F
		l.		- 1		- 1			
Í	60	ł	(Cont)	1	l	1			C

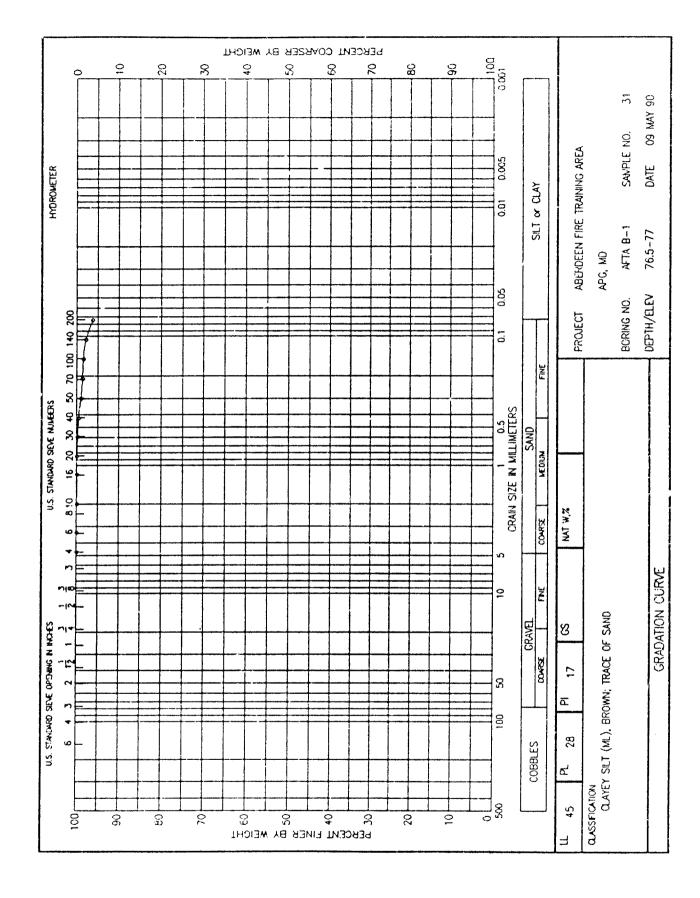

								Hele Ne.	AFTA-B3
DRIL	LING LOG	;	VISION		INSTAL	LÀTIÒN			OF 5 SHEETS
I. PROJECT					10. SIZ	E AND TY	TE OF BIT		
1. LOCATIO	H (Coardinal	aa aa \$1.	-		11. 541	UM FOR E	LEVATIO	H SHOWN (TEM ME	3
3. DRILLING	AGENCY				Ĺ			GHATION OF DRILL	
A HOLE HO	(As aroon		e ettle		13. 701	AL NO. O	OVER-	DISTURSED.	UNIOISTURBEO
& HAME OF						AL HUMB			
4. DIRECTIO	M OF HOLE					VATION O			04PLETED
1	-			068. FROM VERY.		E HOLE		<u>i</u>	
7. THICKNE	S OF OVER	SURDE	•			VATION T			
S. DEPTH O						ATURE O		Y FOR SORING	
9. TOTAL D	T		91.0		<u> </u>	1 cone	Jan. 22		
ELEVATION	DEPTHIL	EGENO.		LASSIFICATION OF MATERIA (Decomplised	<u>.</u>	1 CORE RECOV	BOX OR SAMPLE NO.	(Drilling time, and	or loos, dupth of
1	1 =	1		ont)					
į	kı 🖪		Sand			1	1		<u> </u>
	=	- (1	1		Ε
	62]					}	1		=
1	I I]				1			F
	63								E
		- 1				1	ł i		<u> </u>
	3					ł]		F
	64	- 1				1	1		
	=	ĺ						:	F
	65	1]		E
	=				,				E
	66								E
	=	- [F
	67	- 1					1 1		E
	187	- 1					i i		E
·	Ε	- 1							=
	68-								E
	- #		Grave	el Lincressing					E
	69	- 1	Clay	Incressing.					E
	E	1			-				E
	70	- 1			- 1		1		F
	#	- 1			- 1				E
	713.					į			E
	3			, stiff, organics,	1				=
ļ	72			ntly sandy, ray mottled with re	اه	1	1		=
İ	Ϋ́	}	8	,	1		-		E
}	∃]]	- 1]		E
į	"님				ļ		1		E
ļ	#	ı					1		=
1	74-7	- (- 1	ĺ			E
	3	1			- 1	1	- 1		E
}	75-				1		1		₽
1	⇉				1				E
}	763				}	1	- 1		E
	- =					1			F
	∃	- }				- 1	1		≠
	7-				1	ł	-		E
j	#)				E
-	78.	1			1	-	[E
İ	Ξ					1	- 1		E
	79	1			1		Ì		=
Ì	#	1			1		ļ		E
	80=			(Cont)	}	1	İ		E
HG FORM						POUTCY			

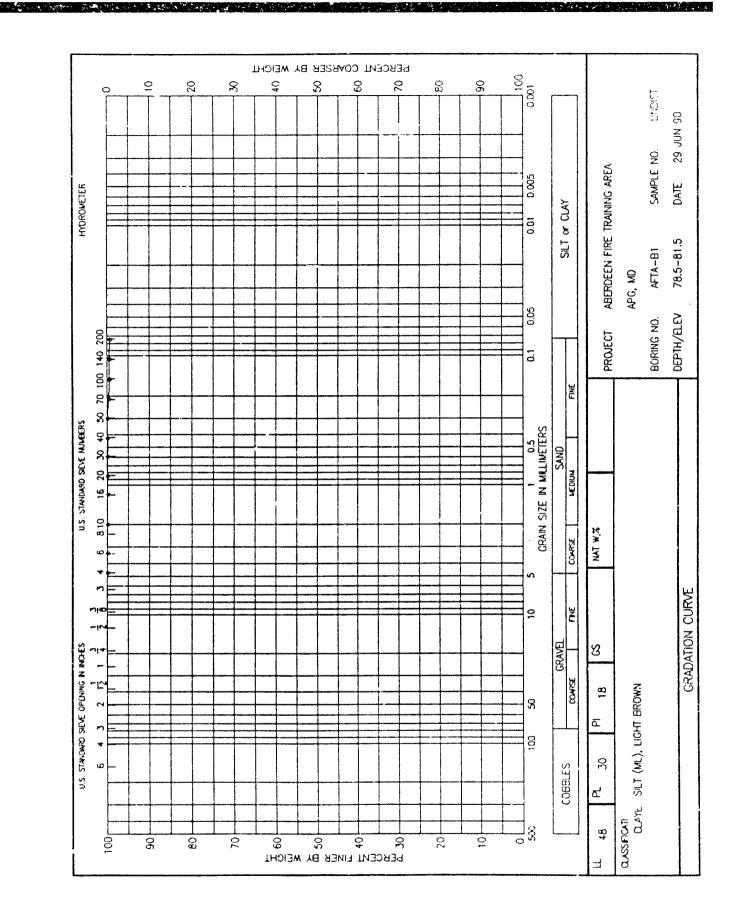

Hele No. AFTA-B3

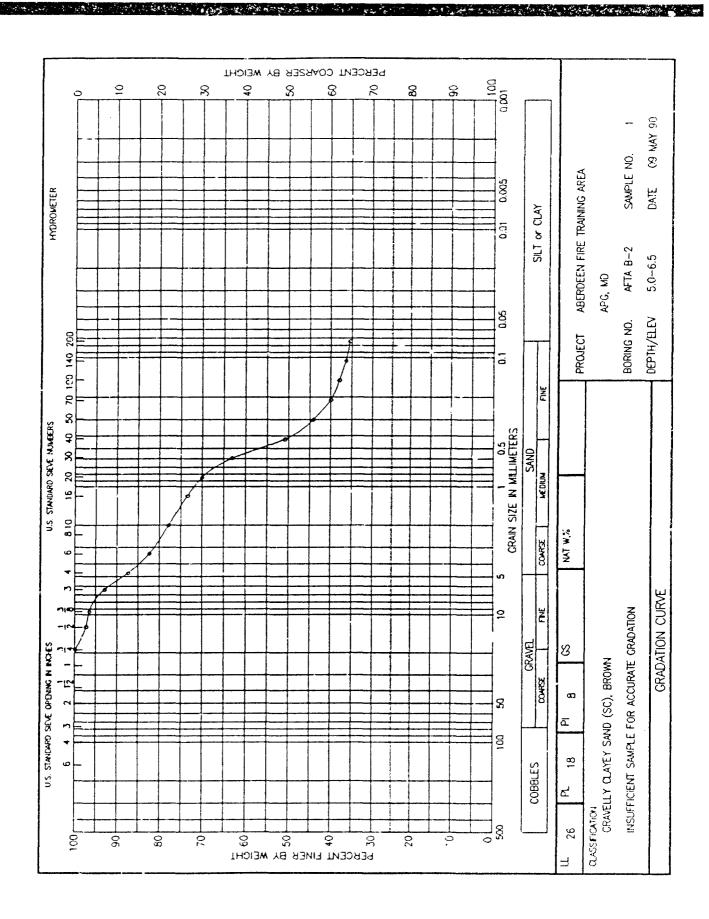
							Hele No.		
DRIL	LING LO	×G °	NA18104	INSTALI	ATION			OF 5 SHEETS	
PROJECT				HE SIZE AND TYPE OF BIT					
LOCATIO	N /Courd's	area er 31	aren)	II. BAYUM FOR ELEVAYION SHOWN (FFM = 201)					
DRILLING				13. HAMUFACTURER'S DESIGNATION OF BRILL					
				18. TOT	AL NO. OF	OVER-	DISTURBED EN	UNDISTURGED	
and file registed					AL NUMBE			<u>:</u>	
HAME OF DRILLER					VATION G				
DIRECTIO				16. DA F	E HOLE	107	MTED CO	MPLETED	
				17. ELE	VATION T	OF OF HO	ne 57.08		
DEPTH OF							Y FOR BORING		
TOTAL DE	EPTH OF	HOLE	91.0	19. MGR	ATURE OF				
EVATION	GEPTH	LEGENO	CLASSIFICATION OF WATERIA (Description)	u	S CORE	SAMPLE HO.		IKS ir loss, depth of it significant	
	E		Clay (Cont)	·····			·		
	81 =		Lignitzed wood chips						
	I" =			į					
	82 =								
	" =								
	83_=								
	""=					1			
	84 🗏								
	β5. 								
İ	2								
	۵, ۵								
	86=								
- 1	87_=								
	°′=			1					
j	Ess								
	=			-					
-	89			- 1	ĺ				
	~]				
	F-00	-							
		- 1		1		j		1	
1	91-7					Ì]	
İ			Bottom of hole 91.0						
	92_	ľ		1	İ				
1	=			- 1	İ	İ			
l	∃			[- 1			
	\exists							ļ	
1	=	- 1		1	1	Ì			
-	∄	Į		ı					
1	=				1				
	E	- 1			- 1	İ			
	\exists	}			l				
	E	i				-		Ė	
	크					1			
		- 1						E	
	Ξ	İ				İ		Ē	
1	=	- 1				İ		Ė	
	E_	-		1	1	į		E	
	4			1	1	1		-	
- 1				- 1	J	- 1		t	

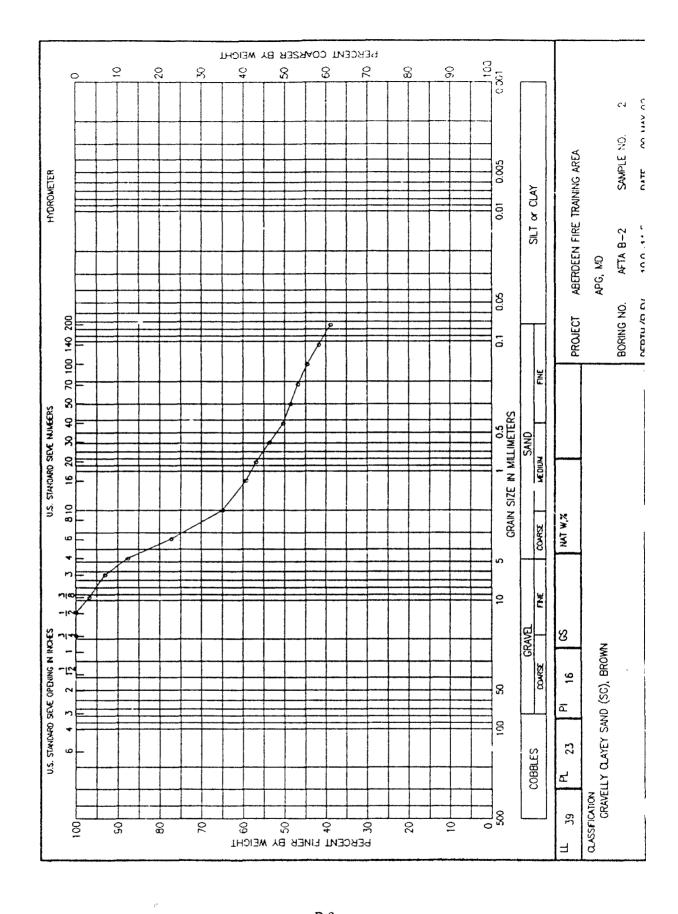

APPENDIX D

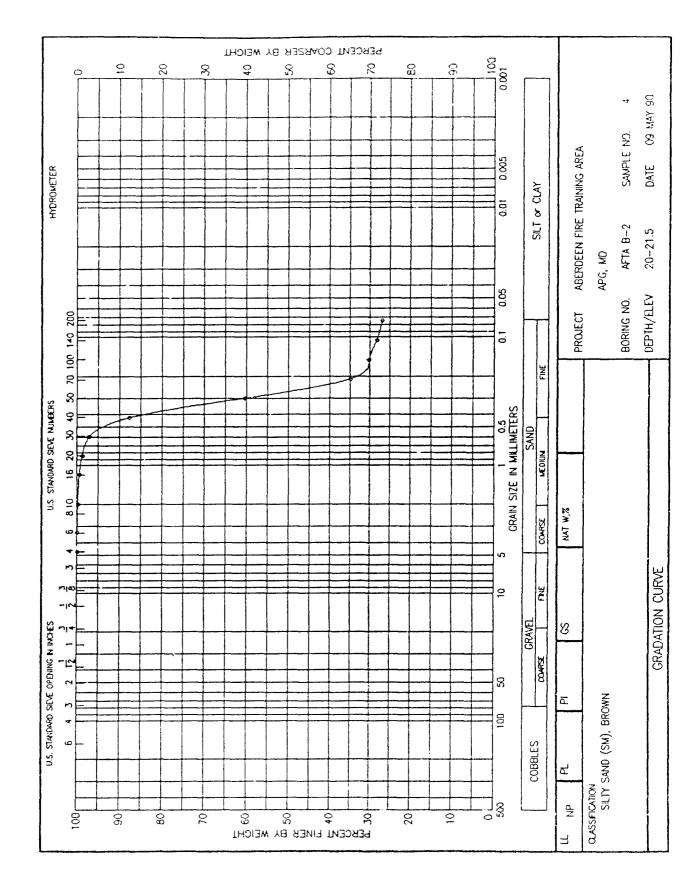

GRAIN SIZE ANALYSIS FOR SOIL BORINGS FTA-B1 THRU FTA-B3

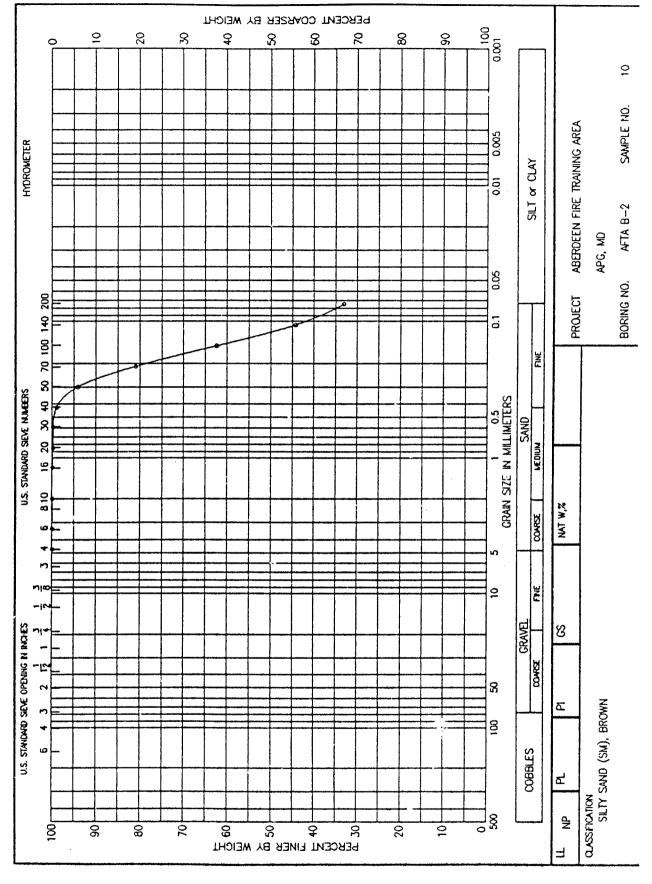


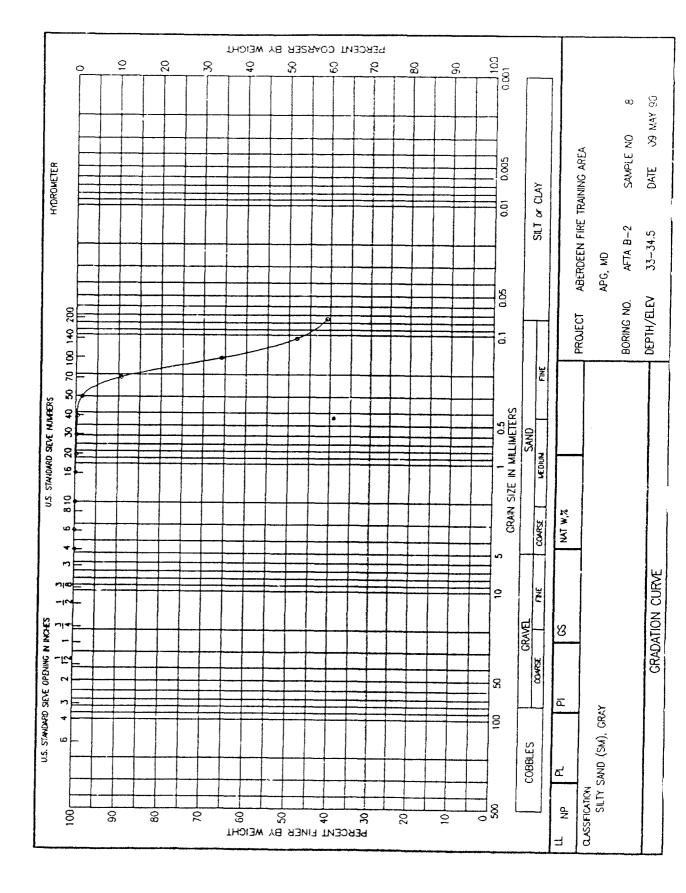


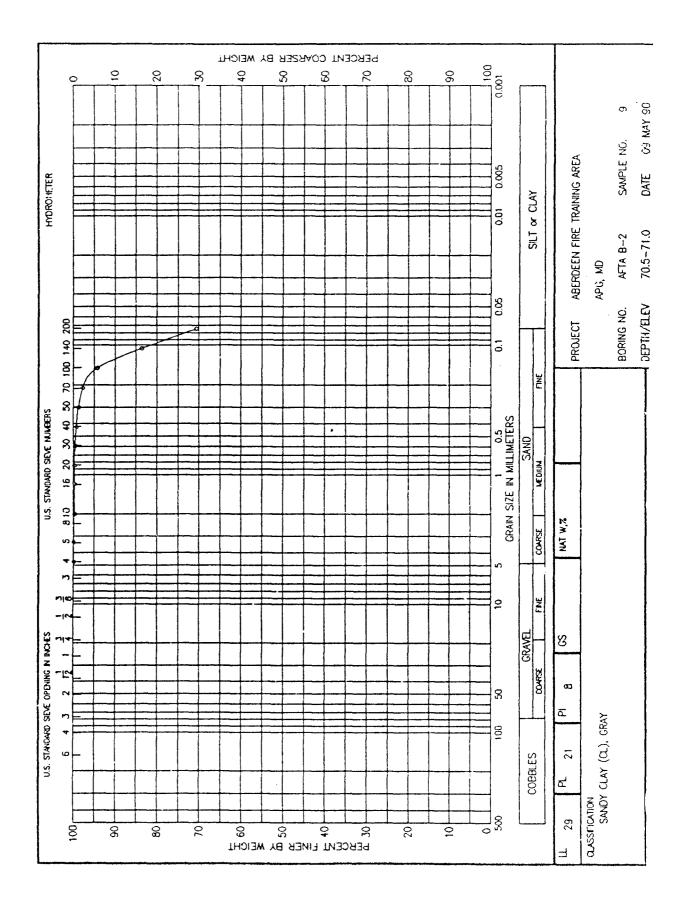

The state of the s

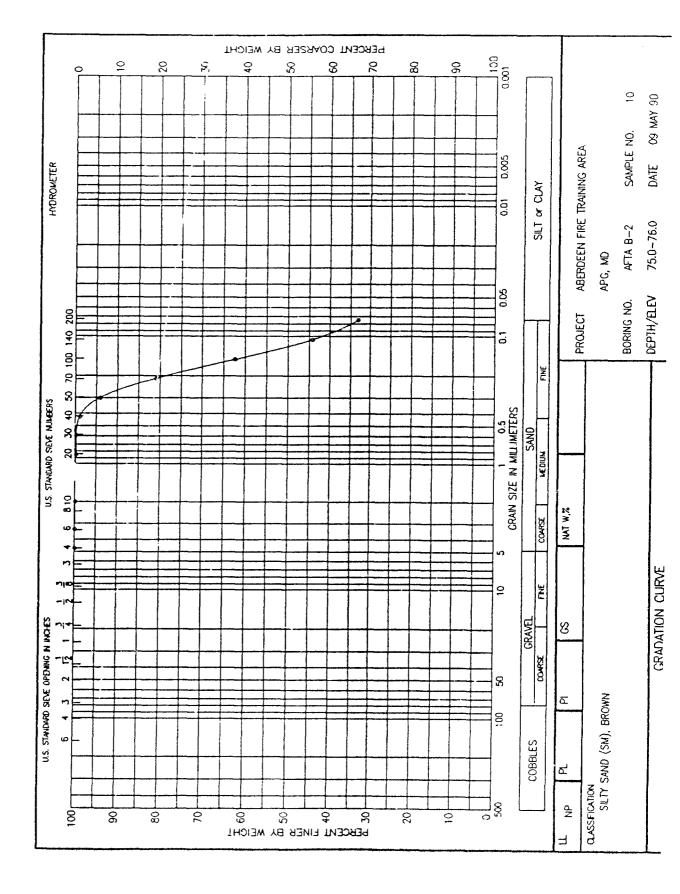


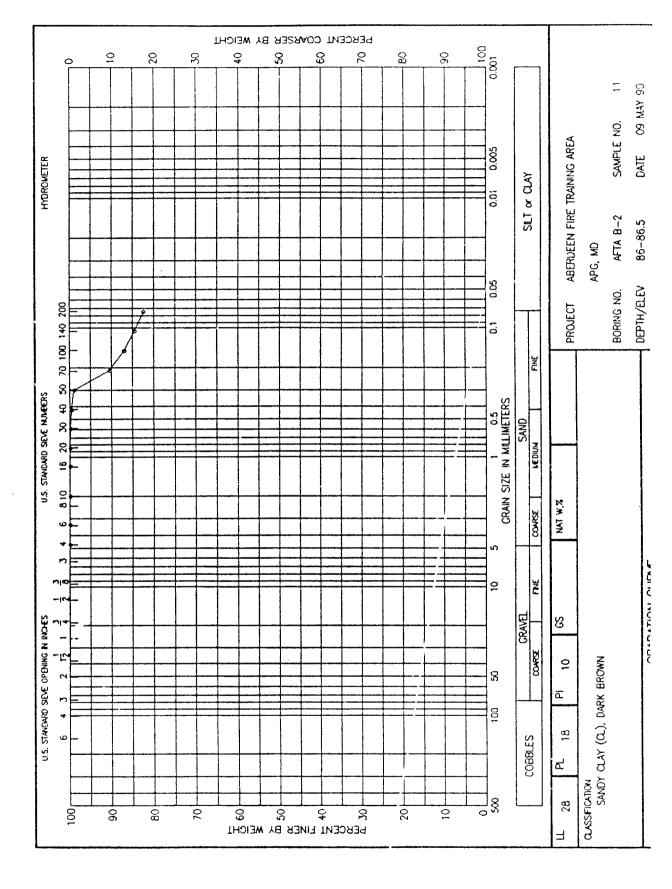


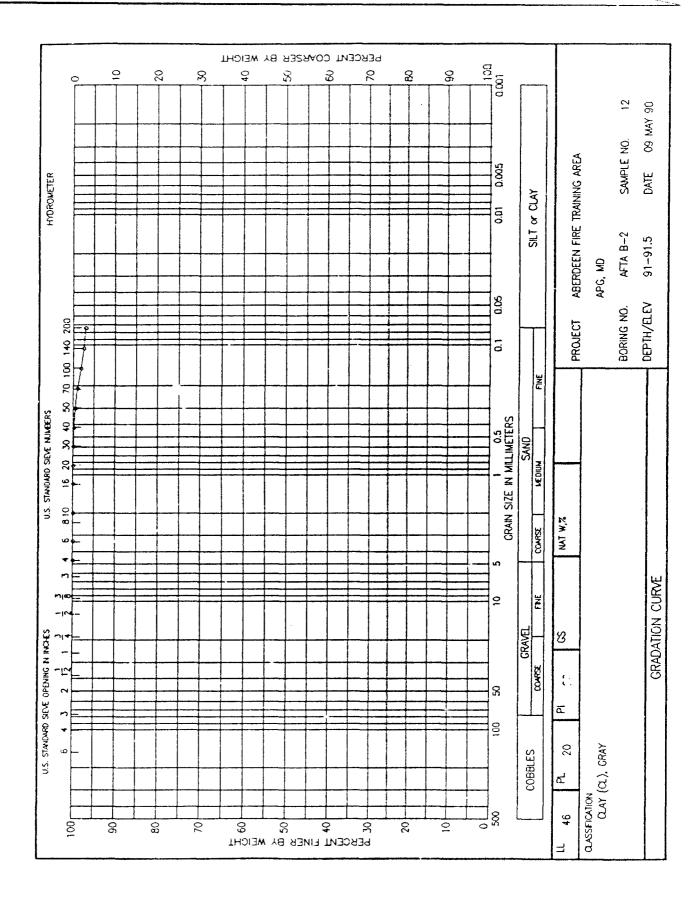


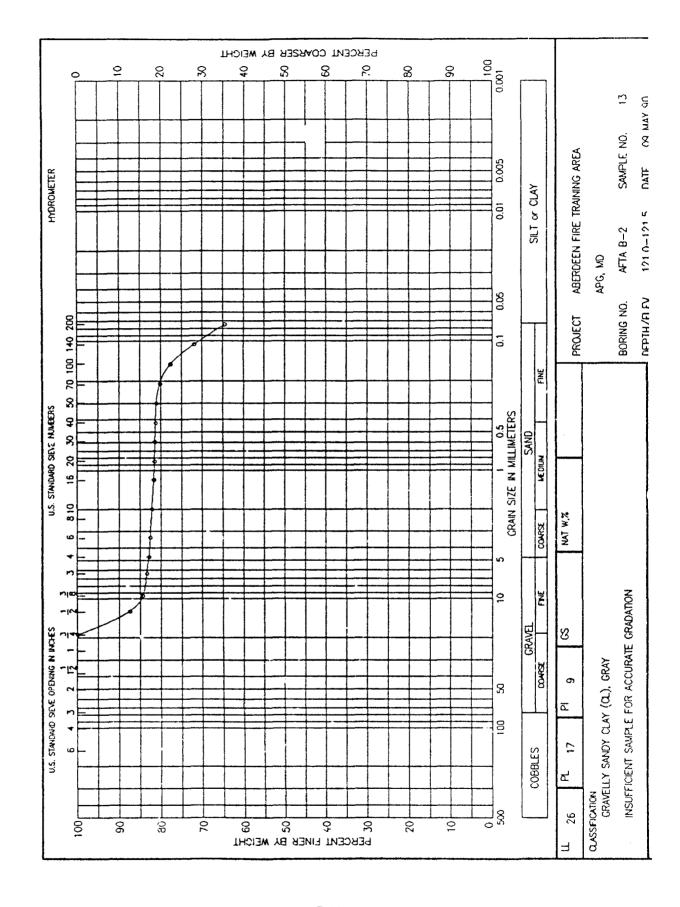


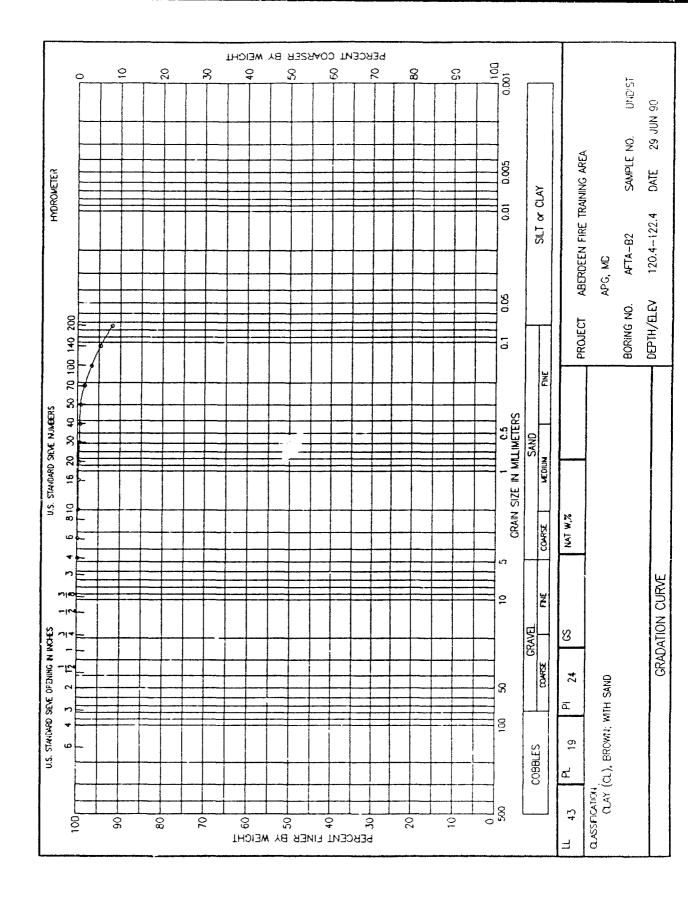


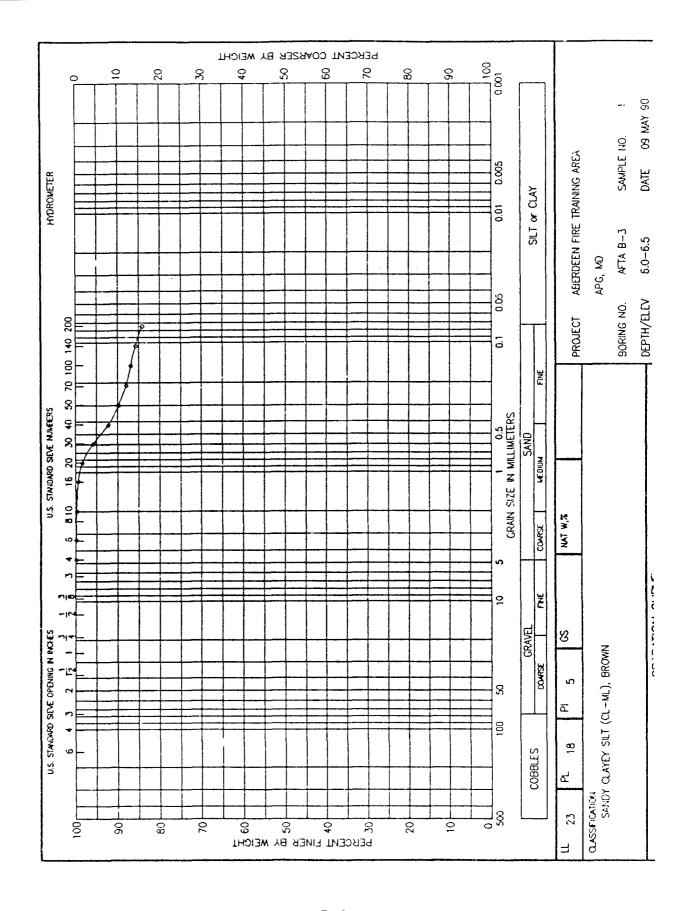


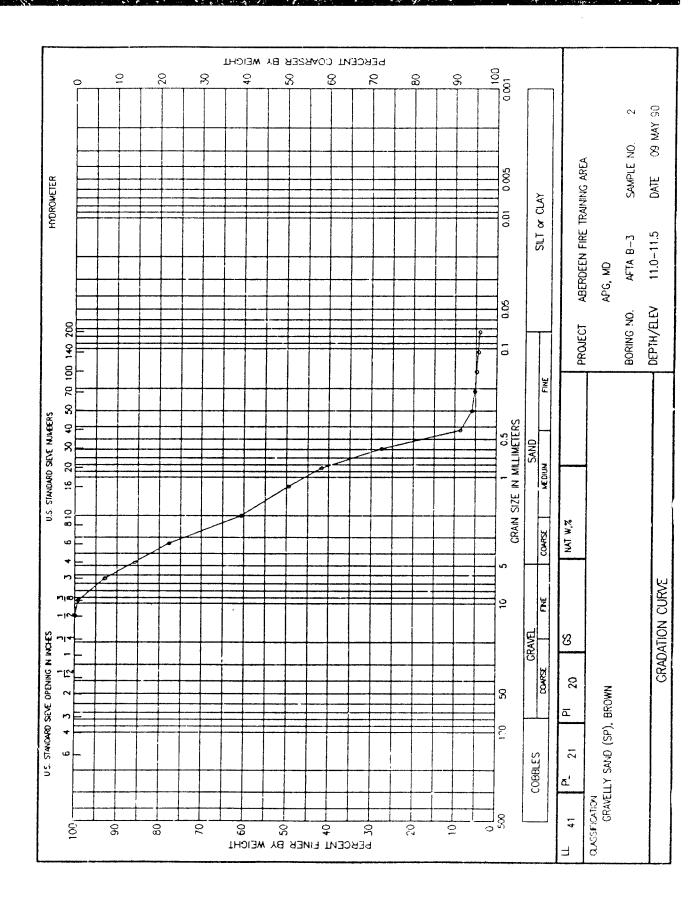


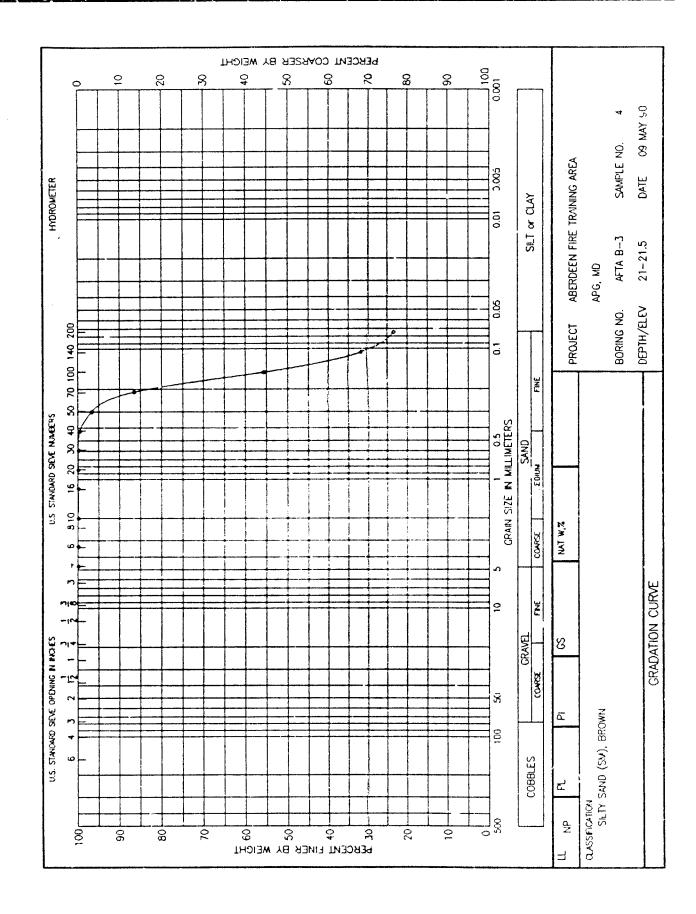


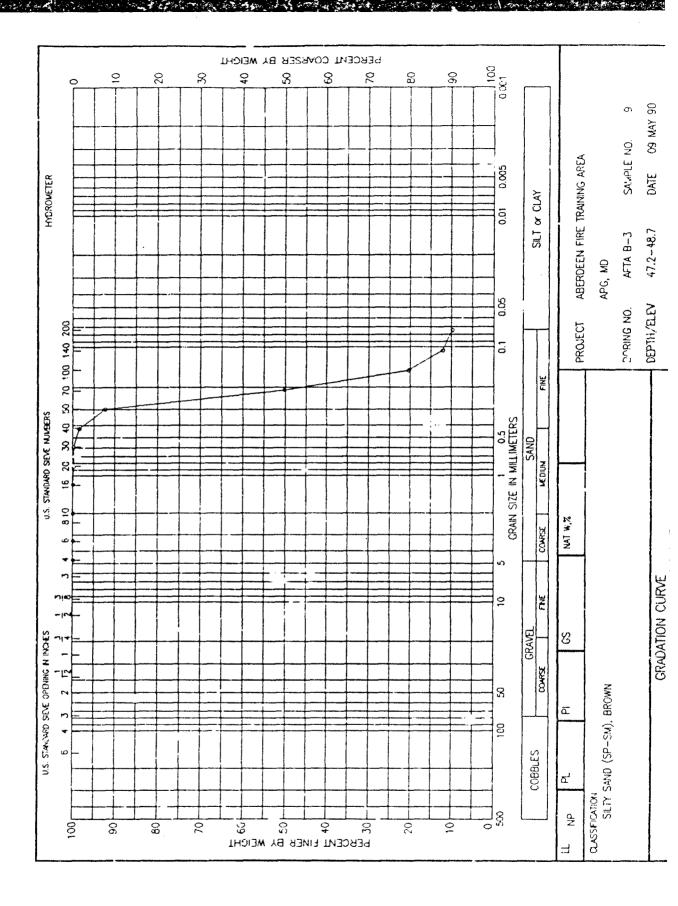


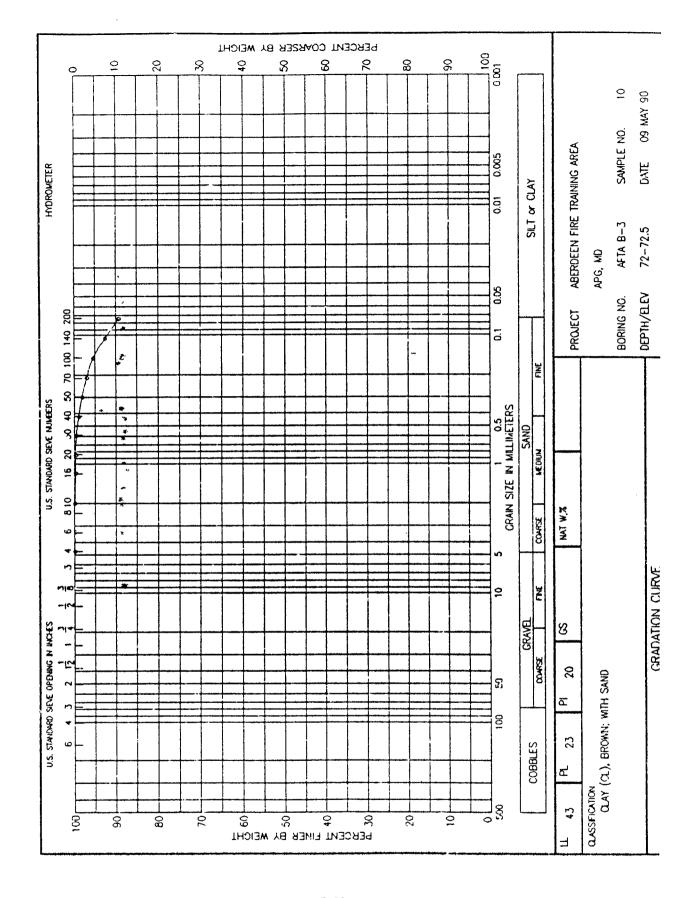

The state of the second







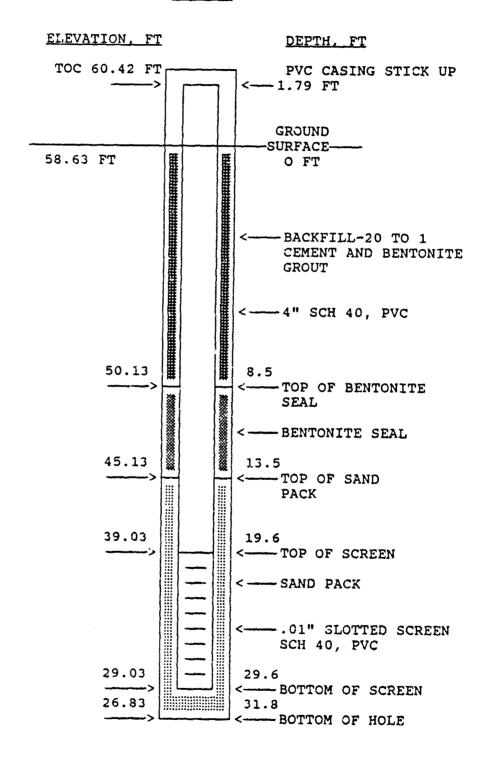



このことをいるとのです しんながらないというという

「大」と、人となると、これになられるとのできたとうでは、ままではないできたが、これでは、たいとうできた。

Alexander of the second with the second with the second of

APPENDIX E


WELL CONSTRUCTION DIAGRAMS
GROUND-WATER MONITOR WELLS FTA-M1 THRU FTA-M12

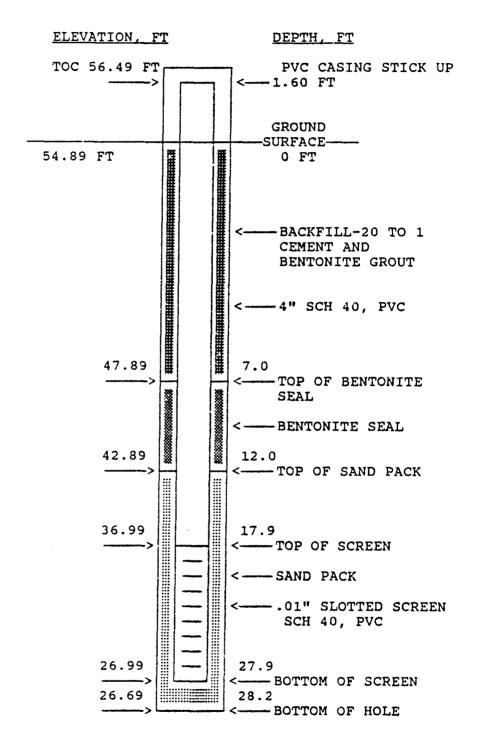
AFTA

WELL NUMBER:

FTA-M1 COORDINATES: X -14777 ; Y 63613

DATE COMPLETE: 11/1/89

<u>AFTA</u>

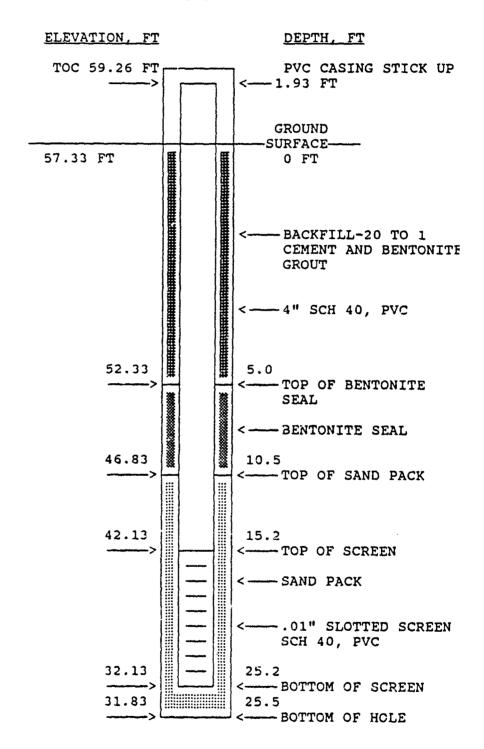

WELL NUMBER:

FTA-M2

COORDINATES:

X -14443 ; Y 63994

DATE COMPLETE: 11/20/89

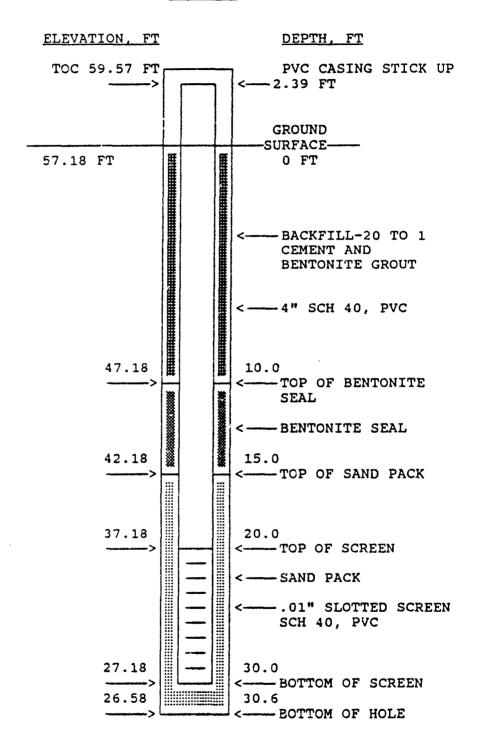


AFTA

WELL NUMBER: FTA-M3

X -14213 ; Y 63530 COORDINATES:

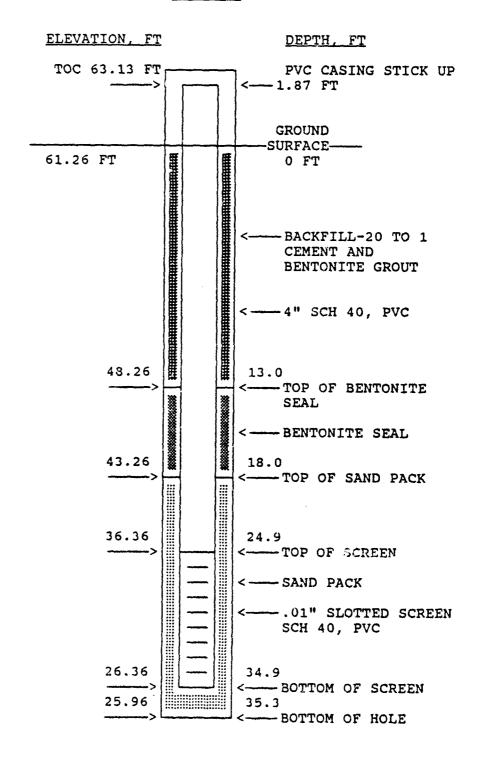
DATE COMPLETE: 10/7/89



<u>AFTA</u>

WELL NUMBER: COORDINATES:

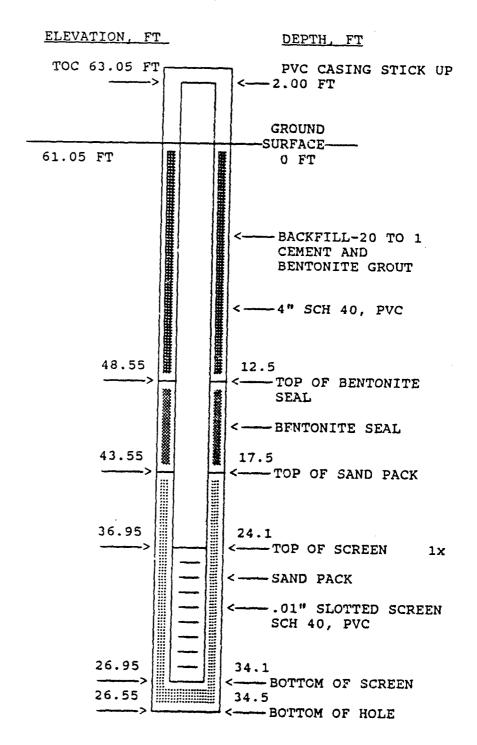
X -14230 ; Y 63517


DATE COMPLETE: 10/12/89

WELL NUMBER:

FTA-M5 COORDINATES: X -14445; Y 63219

DATE COMPLETE: 10/27/89

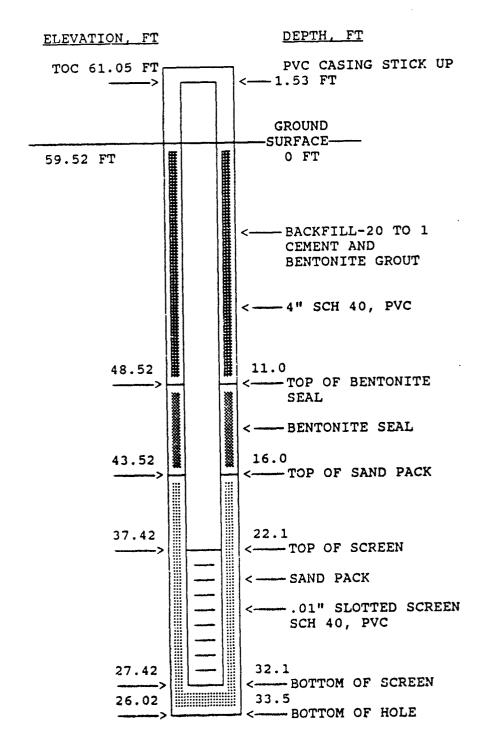


WELL NUMBER:

FTA-M6

X -14632 ; Y 63274

COORDINATES: X -14632 DATE COMPLETE 10/28/89

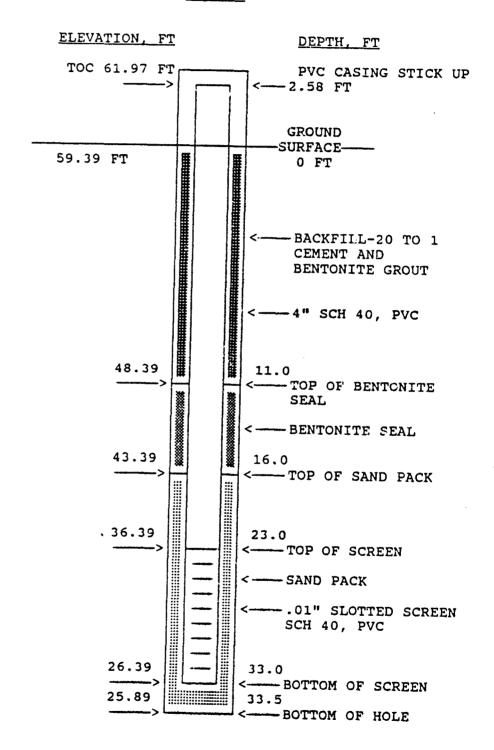


SIYE:

<u>AFTA</u>

WELL NUMBER: FTA-M7
COORDINATES: X -14808; Y 63342

DATE COMPLETE: 11/27/89

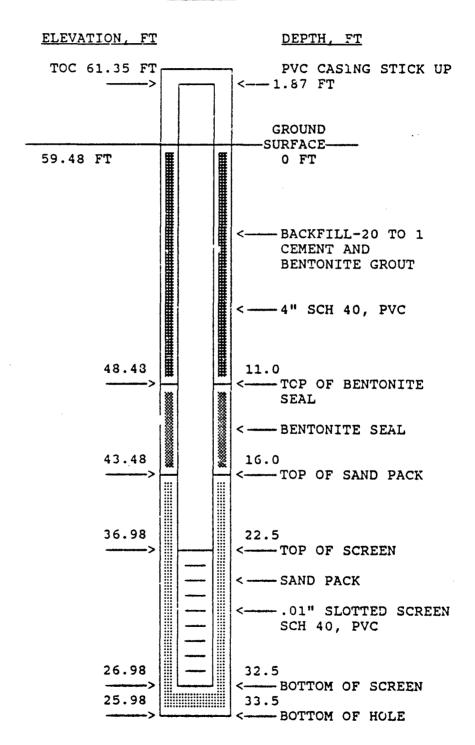


AFTA

WELL NUMBER: FTA-M8

COORDINATES: X -15018 : Y 63395

DATE COMPLETE: 12/3/89

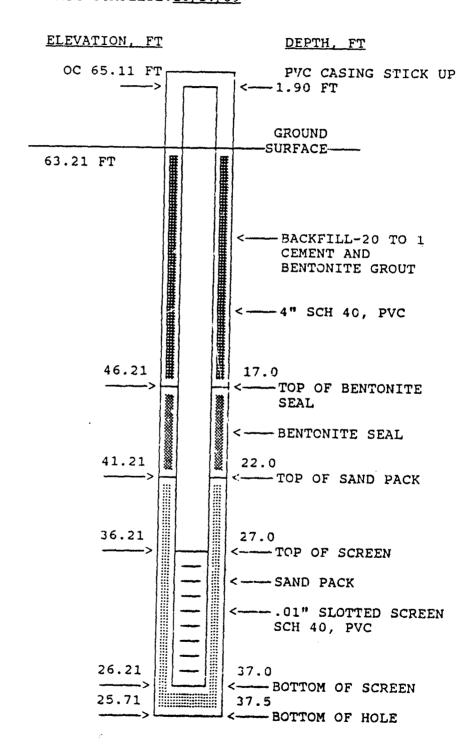


AFTA

WELL NUMBER: FTA-M9

COORDINATES: X -15196 ; Y 63459

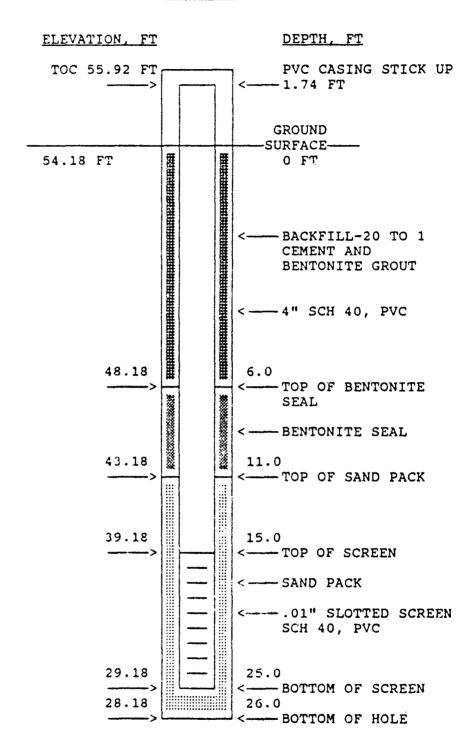
DATE COMPLETE: 11/30/89



<u>AFTA</u>

WELL NUMBER: FTA-M10

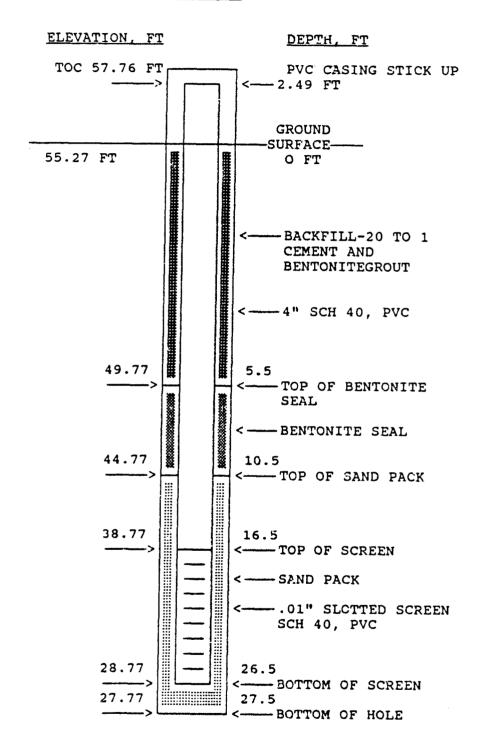
COORDINATES: X -14446 ; Y 62838


DATE COMPLETE: 10/14/89

SITE: AFTA WELL NUMBER: FTA-M11

COORDINATES: X -14251 ; Y 63893

DATE COMPLETE: 11/22/89


AFTA

WELL NUMBER:

FTA-M12

COORDINATES: X -14513 ; Y 64373

DATE COMPLETE: 11/24/89

A STATE OF THE STA

A STATE OF THE STA

APPENDIX F

SURVEY DATA
GROUND-WATER MONITOR WELLS FTA-M1 THRU FTA-M12
AND SOIL BORINGS FTA-B1 THRU FTA-B3

Park With the same and the same

			<u> ELEVATI</u>	ON, FT
	APG COOF	RDINATES	GROUND	TOP OF
WELL #	<u> </u>	у	SURFACE	PVC
FTA-M1	-14776.98	63612.79	58.63	60.42
FTA-M2	-14443.27	63994.53	54.89	56.49
FTA-M3	-14213.29	63529.95	57.33	59.26
FTA-M4	-14230,20	63516.79	57.18	59.57
FTA-M5	-14444.87	63218.74	61.26	63.13
FTA-M6	-14632.43	63274.29	61.05	63.05
FTA-M7	-14808.11	63342.49	59.52	61.50
FTA-M8	-15018.05	63395.06	59.39	61.97
FTA-M9	-15196.18	63458.79	59.48	61.35
FTA-M10	-14446.43	62838.49	63.21	65.11
FTA-M11	-14250.87	63892.67	54.18	55.92
FTA-M12	-14513.24	64373.20	55.27	57.76
WELL 1040	-14227.43	62188.76	55.33	
WELL 1041	-14277.31	62411.19	58.61	

	APG COOL	RDINATES	GROUND SURFACE			
BORING #	x	<u>y</u>	ELEVATION, FT			
FTA-SB1	-14808.70	63591.24	58.99			
FTA-SB2	-14442.10	63958.42	55.54			
FTA-SB3	-14214.32	63492.48	57.08			

APPENDIX G

WATER LEVEL DATA FOR AFTA WELLS DECEMBER 1989 THRU OCTOBER 1990

WATER LEVEL ELEVATION IN FEET (msl)											
	1989		1990								
WELL #	12 DEC	12 JAN	28 FEB	26 MAR	30 MAY	28 JUN	31 OCT				
FTA-M1	32.27	32.02	31.98	31.94	32.54	33.08	32.11				
FTA-M2	32.99	32.82	32.96	32.82	33.49	33.93	32.91				
FTA-M4	32.97	32.67	32.62	32.59	33.10	33.63	32.79				
FTA-M5	32.53	32.18	32.03	32.05	32.50	33.05	32.21				
FTA-M6	32.35	31.98	31.83	31.81	32.32	32.87	32.05				
FTA-M7	32.00	31.78	31.62	31.55	32.21	32.77	31.92				
FTA-M8	31.87	31.49	31.40	31.34	31.87	32.52	31.55				
FTA-M9	31.55	31.20	31.17	31.10	31.75	32.33	31.29				
FTA-M10	32.26	31.96	31.7°	31.78	32.25	32.79	32.03				
FTA-M11	33.17	32.97	33.07	32.92	33.66	34.07	33.09				
FTA-M12	33.46	33.16	33.42	33.24	33.91	34.28	33.18				

NOTE : Well FTA-M3 is dry.

APPENDIX H

WATER LEVEL DATA FOR WELLS AA-1 THRU AA-2 AUGUST 1986 THRU MARCH 1990

_DATE	<u>AA-1</u>	<u>AA - 2</u>	AA - 3	AA-4	<u>AA - 5</u>
9/10/86	29.90	31.35	33.63	38.02	27.51
12/15/86	29.00			38.29	26.65
2/12/87	29.67	31.35	33.34	40.60	27.07
3/20/87	30.13	32.14	33.73	41.31	27.30
4/27/87	30.40	32.49	34.30	40.98	27.68
5/29/87	30.42	32.41	34.44	40.64	27.75
6/30/87	30.20	32.07		40.32	
7/24/87	29.86	31.74	34.05	39.58	27.61
8/20/87	29.73	31.55	33.88	38.80	27.36
9/25/87	29.45	31.05	33.23	38.87	27.18
10/26/87	29.26	30.82	33.11	38.38	27.22
11/24/87	29.01	30.53	32.83	38.02	26.95
12/28/87	28.75	30.20	32.44		26.82
1/29/88	28.51	30.19	32.38	38.32	26.71
2/29/88	28.82	30.59	32.63	39.46	26.74
3/28/88	29.27	31.35	33.05	40.22	27.01
4/13/88	29.21	31.53	33.22	40.41	
5/27/88	29.91	32.35	33.58	42.48	27.36
6/20/88	30.31	32.89	34.67	41.89	27.61
7/12/88	30.31	32.72	34.88	41.29	27.73
8/ 2/88	30.38	32.63	35.17	40.70	27.86
9/ 7/88	30.06	32.34	34.85	40.92	28.01
12/28/88	29.50	31.55	34.15	40.80	27.48
1/27/89	29.41	31.55	33.88	41.22	27.26
4/28/89	31.01	33.55	35.27	43.90	27.86
7/31/89	33.27	35.53	37.38	45.62	29.21
10/23/89	33.13	35.22	37.03	44.12	29.93
1/11/90	33.42	35.06	37.36	43.30	30.49
3/28/90	32.88	35.15	37.01	44.12	29.55

WATER LEVEL ELEVATION IN FEET (msl)

APPENDIX I

SURFACE WATER CHEMICAL DATA NOVEMBER 1989

PARAMETERS	UNIT		FTASB2		FTAS83	I	TASB3SP	F	TASB3OF
1.2.4-TRICHLOROBENZENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL	.250000
1.2-DICHLOROBENZENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000
1.2-DIPHENYLHYDRAZINE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000
1,3-DICHLOROBENZENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	.250000
1,4-DICHLOROBENZENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	.250000
2,4,5-TRICHLOROPHENOL	mg/L	BDL	50.000000	BDL	50.000000	BOL	.250000	BDL	. 250000
2.4,6-TRICHLOROPHENOL	mg/L	BDL	50.000000	BDL	50,000000	BDL.	.250000	BDL	. 250000
2,4-DICHLOROPHENOL	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	.250000
2,4-DIMETHYLPHENOL	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL	. 250000
2,4-DINITRON HENOL	mg/L	BDL	250.000000	BDL	250.000000	BDL.	1.200000	BDL	1.200000
2-CHLORONAPHTHALENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000
2-CHLOROPHENOL	mg/L	BDL	50.000000	BDL.	50.000000	BDL	.250000	BDL	. 250000
2-METHYL-4,6-DINOTROPHENOL	mg/L	BDL	250.000000	BDL	250,000000	BDL	1.200000	BDL	1,200000
2-METHYLNAPHTHALENE	mg/L		140,000000		100.000000	BDL	.250000	BDL	. 250000
2-METHYLPHENOL	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	.250000
2-NITROANILINE	mg/L	BDL	250.000000	BDL	250.000000	BDL	1.200000	BDL	1.200000
2-NITROPHENOL	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	.250000
3.3-DICHLOROBENZIDINE	mg/L	BDL	100.000000	BDL	100.000000	BDL	. 500000	BDL	. 500000
3-NITROANILINE	mg/L	BDL	250.000000	BDL	250.000000	PDL	1.200000	BDL	1,200000
4-BROMOPHENYL ETHER	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	.250000
4-CHLORO-3-METHYLPHENOL	mg/L	BDL	100.000000	BDL	100.000000	BDL	. 500000	BDL	.500000
4-CHLOROANILINE	mg/L	BDL	100.000000	BDL	100.000000	BDL	. 500000	BDL	. 500000
4-CHLOROPHENYL PHENYL ETHER	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000
4-METHYLPHENOL	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL	.250000
4-NITROANILINE	mg/L	BDL	250.000000	BDL	250.000000	BOL	1.200000	BDL	1.200000
4-NITROPHENOL	mg/L	BDL	250.000000	BDL	250.000000	BDL	1.200000	BOL	1.200000
ACENAPHTHENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL	. 250000
ACENAPHTHYLENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL	.250000
ANILINE	mg/L	BDL	100.000000	BDL.	100.000000	BDL	. 500000	BDL	. 500000
ANTHRACENE	mg/L	BDL	50.000000	BDL	50.000006	BDL	. 250000	BDL	.250000
BENZIDINE	mg/L	BDL	250.000000	BOL	250.000000	BDL	1.200000	BCL	1.200000
BENZO(a)ANTHRACENE	mg/L	BDI.	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000
BENZO(a)PYRENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000
BENZO(b)FLUORANTHENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000
BENZO(g,h,i)PERYLENE	mg/L	BDL	50.000000	adl	50.000000	BDL	. 250000	BDL	.250000
BENZO(k)FLUORANTHENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	.250000
BENZOIC ACID	mg/L	BDL	250.000000	BDL	250.000000	BDI.	1.200000	BDL	1.200000
BENZYL ALCOHOL	mg/L	BDL	100.000000	BDL	100.000000		. 920000		1.800000
BIS(2-CHLOROETHOXY)METHANE	mg/L	BDL	50.000000	BOL	50.000000	BDL	.250000	BDL	. 250000
BIS(2-CHLOROETHYL)ETHER	mg/L	BDL	50.000000	BOL	50.000000	BOL	.250000	BDL	. 250000
BIS(2-CHLOROISOPROPYL)ETHER	mg/L	BDL	50.000000	BDE	50.000000	BDL.	. 250000	BOL	.250000
BIS(2-ETHYLHEXYL)PHTHALATE	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL	.250000
BUTYLBENZYLPHTHALATE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000
CHRYSENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL	.250000

Below Detection Limit

^{#1} #3 #4 #3 #4 #3 #7 Samples contained an oil layer, values reported are for water layer only

Petroleum hydrocarbon concentrations estimated at 300 ppm Petroleum hydrocarbon concentrations estimated at 200 ppm Petroleum hydrocarbon concentrations estimated at 0.95 ppm Petroleum hydrocarbon concentrations estimated at 1.2 ppm Diluted Cut

PARAMETERS	UNIT		FTASB2		FTASB3		FTASB3SP		FTASB30F
DI-N-OCTYLPHTEALATE	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL.	. 250000
DIBENZO(a,h)ANTHRACENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	.250000
DIBENZOFURAN	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL	.250000
DIBUTYLPHTHALATE	mg/L	BOL	50.000000	BDL	50.000000	BDL	.250000	BDL	.250000
DIETHYL PHTHALATE	mg/L	BDI.	50.000000	BUL	50.000000	BDL	.250000	BDL	.250000
DIMETHYL PHTHALATE		BDL.	50.000000	BDL	50.000000	BDL	.250000	BDL	.250000
	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL	.250000
FLUORANTHENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL	.250000
FLUORENE	mg/L					BDL	.250000	BDL	. 250000
HEXACHLOROBENZENE	mg/L	BDL	50.000000	BDL	50.000000				
HEXACHLOROBUTADIENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	.250000
HEXACHLOROCYCLOPENTADIENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	.250000
HEXACHLOROETHANE	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BOL	.250000
INDENO(1,2,3-c,d)PYRENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000
ISOPHORONE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000
n-nitroso-di-methylamine	mg/L	BDL	50.000000	BOL	50.000000	BDL	. 250000	BDL	. 250000
N-NITROSO-DI-N-PROPYLAMINE	nog/L	BDL	50.000000	BOL	50.000000	BDL	.250000	BDL	.250000
n-nitroso-di-phenylamine	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BCL	. 250000
NAPHTHALENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BOL	. 250000
NITROBENZENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000 •
PENTACHLOROPHENOL	mg/L	BDL	250.000000	BDL	250.000000	BDL	1.200000	BDL	1.200000
PHENANTHRENE	mg/L		63.000000		24.000000		. 170000		.130000
PHENOL	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	RDL	.250000
PYRENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	.250000
AMMONIA NITROGEN	mg/L	#1	.140000	#1	.278000		.161000		. 226000
CHEMICAL OXYGEN DEMAND	ng/L	#1	9845.300000	#1	5550.000000		2130,000000		1830,000000
CHLORIDE	mg/L		26.500000		19.800000		24.800000		20,200000
NITRATE NITROGEN	mg/L	#1	2.380000	#1	. 992000		.372000		. 172000
ORTHOPHOSPHATE	mg/L	#1	1.120000	#1	2.210000		.469000		.439000
SULFATE	mg/L		24.400000		19.000000		13.500000		10.400000
TOTAL ORGANIC CARBON	mg/L			-	-	BDL	1.000000		768,000000
2,4-dinitrotoluene	mg/L	BDL	50.000000	BDL	50.000000	BDL	. 250000	BDL	. 250000
2,6-DINITROTOLUENE	mg/L	BDL	50.000000	BDL	50.000000	BDL	.250000	BDL	.250000
ANTIMONY	mg/L	BDL	.005000	BDL	.005000	BDL	.005000	BDL	.005000
ARSENIC	mg/L		.007600		.010000		.007000		.005000
BERYLLIUM	mg/L	BDL	.005000	BDL	.005000	BDL	.005000	BDL	.005000
CADMIUM	mg/L		.037900		. 030500		.005600		.006200
CHROMIUM	mg/L		.093000		.054000		.038000		.023000
COPPER	mg/L		.267000		.455000		.036000		.030000
LEAD	mg/L		5.770000		2.530000		.249000		. 193000
MERCURY	mg/L	BDL	.000400	BDL	.000400	BOL	.000400	BDL	.000400
NICKEL	mg/L		.061000		.055000		.013000		.011000
SELENIUM	mg/L	BDL	,005000	BDL	.005000	BDL	.005000	BDL	.005000
SILICON	mg/L		25,800000		45.000000		11,600000		7,110000
SILVER	mg/L		.001000		.004000		.003000		.004000
			, ,,,,,,,,						. 30,000

BDL #1 #3 #4 #3 #3 #7

Below Detection Limit
Samples contained an oil layer, values reported are for water layer only
Petroleum hydrocarbon concentrations estimated at 300 ppm
Petroleum hydrocarbon concentrations estimated at 200 ppm

Petroleum hydrocarbon concentrations estimated at 0.95 ppm Petroleum hydrocarbon concentrations estimated at 1.2 ppm Diluted Out

PARAMETERS	TINU		FTASB2		FTASB3	I	FTASBJSP	1	FTASB3OF
WITAL TIME	/	901	001000	BDL	.001000	BDL	.001000	BDL	.001000
THALLIUM	mg/L	BDL	.001000 2.670000	DUL	2.620000	שטם	.425000	BUL	.382000
ZINC	mg/L					901		BDL	83.000000
OIL & GREASE	mg/L		34763.000000		11596.000000	BDL	83.000000		.000200
PCB 1016	ng/L	BDL	.004000	BOL	.002000	BDL	.000200	BDL BDL	
PCB 1221	mg/L	BDL	.004000	BDL	.002000	BDL	.000200		.000200
PCB 1232	mg/L	BDL	.004000	BDL	.002000	BDL	.000200	BDL	.000200
PCB 1242	mg/L	BDL	.004000	BDL	.002000	BDL	.000200	BDL	,000200
PCB 1248	mg/L	BDL	.004000	BOL	.002000	BDL	.009200	BDL	.000200
PCB 1254	mg/L	BDL	.004000	BDL	.002000	BDL	.000200	BDL	.000200
PCB 1260	mg/L	BDL	.004000	BDL	.002000	BDL	.000200	BDL	.000200
ALDRIN	ung /L	BDL	.000200	BDL	.000103	BDL	.000010	BDL	.000010
CHLORDANE	mg/L	BDL	.004000	BDL	.002000	BDL	.000200	BDL	.000200
DIELDRIN	mg/L	BDL	.000200	BDL	.000100	BDL	.000010	BDL	.000010
ENDOSULFAN I	mg/L	BDL	. 000200	BDL	.000100	BDL	.000010	BDL	.000010
ENDOSULFAN II	mg/L	BDL	.000200		.003300	BDL	.000010	BDL	.000010
ENDOSULFAN SULFATE	mg/L	BDL	.000200	BDL	.000100	BDL	.000010	BDL	.000010
ENDRIN	mg/L	BDL	.000200	BDL	.000100	BDL	.000010	BDL	.000010
ENDRIN ALDEHYDE	mg/L	BDL	.000200	BDL	.000100	BDL	.000010	BDL	.000010
HEPTACHLOR	mg/L	BDL	.000200	BDL	.000100	BDL	.000010	BDL	.000010
HEPTACHLOR EPOXIDE	mg/L	BDL	.000200	BDL	.000100	BDL	.000010		.000140
METHOXYCHLOR	mg/L	BDL	.000200	BDL	.000100	BDL	.000010	3DL	.000010
PPDDD	mg/L	BDL	.000200	BDL	.000100	BDL	.000010	BDL	.000010
PPDDE	mg/L	BDL	.000200	BDL	.600100	BDL.	.000010	BDL	.000010
PPDDT	mg/L	BDL	.000200		.011000		.048000		.024000
TOXAPHENE	mg/L	BDL	.004000	BDL	.002000	BDL	.000200	BDL	.000200
a-BBC	mg/L	BDL	.000200	BDL	.000100	BDL	.000010	BDL	.000010
b-BEC	mg/L	BDL	.000200	BDL	.000100	BDL	.000010	BDL	.000010
d-BEC	mg/L	BDL	.000200	BDL	.000100	BDL	.000010	BDL	.000010
g-BHC	mg/L	BDL	000200	BDL	.000100	BDL	.000010	BDL	.000010
1,1,1-TRICHLOROETHANE	mg/L	BDL	.050000	BDL	.950000	BDL	.050000	BDL	.050000
1,1,2,2-TETRACHLOROETHANE	mg/L	BDL	. 050000	BDL	.050000	BDL	.050000	BDL	.050000
1,1,2-TRICHLOROETHANE	mg/L	BDL	. 050000	BDL	.050000	BDL	.050000	BDL	.050000
1,1-DICHLOROETHANE	mg/L	BDL	. 050000	BDL	.050000	BDL	.050000	BUL	.050000
1,1-DICHLOROETHENE	mg/L	BDL	.050000	BDL.	.050000	BDL	.050000	BDL	.050000
1,2-DICHLOROETHANE	mg/L	BOL	. 050000	BUL	.050000	BDL	.050000	BDL	.050000
1,2-DICHLOROPROPANE	mg/L	BDL	.050000	BDL	.950000	BDL	.050000	BDL	.050000
2-BUTANONE	mg/L	BDL	1.000000	BDL	1.000000	BOL	1.000000	BDL	1.000000
2-CHLCROETHYLVINYLETHER	mg/L	BDL	. 100000	BOL	.100000	BDL	. 100000	BDL	.100000
2-HEXANONE	mg/L		1.300000		. 860000		.890000		1.600000
4-METHYL-2-FENTANONE	mg/L	BDL	. 500000	BDL	. 500000	BDL	.500000	BDL	. 500000
ACETONE	mg/L		110.000000		95.000000		67.000000		62,000000
ACROLEIN	mg/L	BDL	1,000000	BDL	1.000000	BDL	1.000000	BDL	1.000000
ACRYLONITRILE	mg/L	BDL	1.000000	BDL	1.000000	BOL	1.000000	BDL	1.000000
tweet tright T T to 4 from		446	1.500000	406	1.53000	mer to	1.00000		1.00000

BDL #1 #3 #4 #3 #3 #7 Below Detection Limit Samples contained an oil layer, values reported are for water layer only Samples contained an oil layer, Values reported are for war Petroleum hydrocarbon concentrations estimated at 300 ppm Petroleum hydrocarbon concentrations estimated at 200 ppm Petroleum hydrocarbon concentrations estimated at 0.95 ppm Petroleum hydrocarbon concentrations estimated at 1.2 ppm Diluted Out

PARAMETERS	UNIT	F	TASB2	FTASB3		FTASB3SP		FTASB30F	
BENZENE	mg/L		.110000		. 130000		.200000		. 210000
BROMODICHLOROMETHANE	mg/L	BDL	.050000	BDL	.050000	BOL	.050000	BDL	.050000
BROMOFORM	mg/L	BDL	. 050000	BDL	. 050000	BDL	. 050000	EDL	. 050000
BROMOMETHANE	mg/L	BDL	.100000	BDL	.100000	BDL	. 100000	BDL	.100000
CARBON TETRACHLORIDE	mg/L	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
CARBONDISULFIDE	mg/L	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
CHLOROBENZENE	mg/L	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
CHLOROETHANE	mg/L	BDL	. 100000	BDL	.100000	BDL	.100000	BDL	.100000
CHLOROFORM	mg/L	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
CHLOROMETHANE	mg/L	BDL	. 100000	BDL	.100060	BDL	.100000	BOL	.100000
CIS-1,2-DICHLOROETHENE	mg/L	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
CIS-1,3-DICHLOROPROPENE	mg/L	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
DIBROMOCHLOROMETHANE	mg/L	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
ETHYLBENZENE	mg/L	BDL	.050000	BDL	.050000		.064000		.081000
METHYLENE CHLORIDE	mg/L		.480000		.076000		. 100000		. 160000
STYRENE	mg/L	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
T-XYLENE	mg/L		.070000		.123000		.470000		.470000
TETRACHLOROETHENE	mg/L	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
TOLUENE	mg/L		.093000		.073000		.360000		370000
TRANS-1,2-DICHLOROETHENE	mg/L	BDL	. 050000	BDL	.050000	BDL	. 050000	BDL	.050000
TRANS-1,3-DICHLOROPROPENE	mg/L	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
TRICHLOROETHENE	mg/L	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
VINYL ACETATE	mg/L	BDL	. 500000	BDL	. 500000	BDL	. 500 000	BDL	. 500000
VINYL CHLORIDE	mg/L	BDL	.100000	BDL	. 100000	BDL	. 100000	BDL	. 100000
2,4,6-TRIBROMOPHENCL-S	Z	# 7	.000000	#7	.000000	# 7	.000000	# 7	.000000
2-FLUOROBIPHENYL-S	Z	#3	.000000	#4	.000000	#5	.000000	#6	,000000
2-FLUOROPHENOL-S	Z	∌ 7	.000000	#7	. 000000	≠ 7	.000000	#7	.000000
NITROBENZENE-D5-S	Z	#3	.000000	#4	.000000	#5	.000000	#6	.000000
P-TERPHENYL-D14-S	z	#3	.000000	#4	.000000	#5	. 000000	#6	.000000
PHENOL-D5-S	z	∌ 7	.000000	#7	.000000	#7	.000000	#7	. 000000
1,2-DICHLOROETHANE-D4-S	2		92.500000		108.000000		115.000000		107.000000
4-BROMOFLUOROBENZENE-S	z		85.100000		104.000000		138.000000		110.000000
TOLUENE-D8-S	Z		75.400000		84.000000		114.000000		79.000000

BDL Below Detection Limit

\$1 Samples contained an cil layer, values reported are for water layer only

\$3 Petroleum hydrocarbon concentrations estimated at 300 ppm

\$4 Patroleum hydrocarbon concentrations estimated at 200 ppm

\$5 Petroleum hydrocarbon concentrations estimated at 0.95 ppm

\$6 Petroleum hydrocarbon concentrations estimated at 1.2 ppm

\$7 Diluted Out

PARAMETERS	UNIT	METHOD BLANK
1.2.4-TRICHLOROBENZENE	mg/L	••
1,2-DICHLOROBENZENE	mg/L	
1,2-DIPHENYLHYDRAZINE	ma/L	
1,3-DICHLOROBENZENE	mg/L	
1,4-DICHLOROBENZENE	mg/L	
2,4,5-TRICHLOROPHENOL	mg/L	
2,4,6-TRICHLOROPHENOL	mg/L	
2,4-DICHLOROPHENOL	mg/L	
2,4-DIMETHYLPHENOL	mg/L	+-
2.4-DINITROPHENOL	mg/L	
2-CELORONAPHTHALENF	mg/L	
2-CHLOROPHENOL	mg/L	
2-METHYL-4,6-DINOTROPHENOL	mg/L	
2-METHYLNAPETHALENE	mg/L	
2-METHYLPHENOL	mg/L	
2-NITROANILINE	mg/L	
2-NITROPHENOL	mg/L	
3,3-DICHLOROBENZIDINE	mg/L	
3-NITROANIL:NE	mg/L	
4-BROMOPHENYL ETHER	mg/L	
4-CHLORO-3-METHYLPHENGL	mg/L	
4-CHLOROANILINE	mg/L	
4-CHLOROPHENYL PHENYL ETHER	mg/L	
4-METHYLPHENOL	mg/L	
4-NITROANILINE	mg/L	
4-NJTROPHENOL	mg/L	
ACENAPHTHENE	mg/L	
ACENAPHTHYLENE	mg/L	
ANILINE	ma/L	
ANTHRACENE	mg/L	
BENZIDINE	mg/L	
BENZO(a)ANTHRACENE	mg/L	
BENZO(a) FYRENE	mg/L	••
BENZO(b) FLUORANTHENE	mg/L	
BENZO(g,h,')FERYLENE	mg/L	
BENZO(k)FLUORANTHENE	mg/L	
BENZOIC ACID	mg/L	
BENZYL ALCOHOL	mg/L	
BIS(2-CHLOROETHOXY)METHANE	mg/L	••
BIS(2-CHLOROETHYL)ETHER	mg/L	
BIS(2-CHLOROISCFROPYL)ETHER	mg/L	
BIS(2-ETHYLHEXYL)PHTBALATE	mg/L	+-
BUTYLBENZYLPHTHALATE	mg/L	
CHRYSENE	mg/L	·

```
Below Detection Limit

Samples contained an oil layer, values reported are for water layer only
Petroleum hydrocarbon concentrations estimated at 300 ppm
Petroleum hydrocarbon concentrations estimated at 200 ppm
Petroleum hydrocarbon concentrations estimated at 0.95 ppm
Patroleum hydrocarbon concentrations estimated at 0.95 ppm
Patroleum hydrocarbon concentrations estimated at 1.2 ppm
Dilute Out
```

PARAMETERS	TINU	METHOD BLANK
DI-N-OCTYLPHTHALATE	mg/L	**
DIBENZO(A, h)ANTHRACENE	mg/L	4.
DIBENZOFURAN	mg/L	
DIBUTYLPHTHALATE	mg/L	
DIETHYL PHTHALATE	nug/L	
DIMETHYL PHTHALATE	mug/L	
FLUORANTHEN	mag/L	+-
FLUORENE	mg/L	
HEXACHLOROBENZENE	ong/L	
HEXACHLORGBUTADIENE	mg/L	
HEXACHLOROCYCLOPENTAD I ENE	mg/L	
BEXACELGROETHANE	mg/L	
INDENO(1,2,3-c,d)PYRENE	mg/L	
ISCPHORONE	mg/L	**
N-NITROSO-DI-METSYLAMINE	ong/L	
N-NITROSO-DI-N-PROPYLAMINE	mg/L	**
N-NITROSO-DI-PHENYLAMINE	mg/L	
NAPHTHALENE	mg/L	
NITROBENZENE	g,/∟ πωε/L	. -
PENTACHLOROPHENOL	mg/L	
PEENANTERENE	mg/L	
PHENOL	mg/L	
PYRENE	g/≟ 	**
AMMONIA NITROGEN	mg/L	
CHEMICAL OXYGEN DEMAND	mg/L	
CHLORIDE	mg/L	
NITRATE NITROGEN	mg/L	
ORTHOPHOSPHATE	mg/L	••
SUIFATE	mg/L	
TOTAL ORGANIC CARBON	mg/L	
2,4-DINITROTOLUENE	mar/L	
2,6-DINITROTOLUENE	mg/L	+ -
ANTIMONY	mar/L	••
ARSENIC	mg/L	
BERYLLIUM	mg/L	
CADMIUM	mg/L	
CEROMIUM	mg/L	
COPPER	mg/L	
LEAD	mg/L	
MERCURY	mg/L	
NICKEL	mg/L	
SELENIUM	mg/L	
SILICON	mg/L	
SILVER	mg/L	

```
BDL Below Detection Limit

$1 Samples contained an oil layer, values reported are for water layer only

$3 Petroleum hydrocarbon concentrations estimated at 300 ppm

$4 Petroleum hydrocarbon concentrations estimated at 200 ppm

$3 Petroleum hydrocarbon concentrations estimated at 0.95 ppm

$4 Petroleum hydrocarbon concentrations estimated at 1.2 ppm

$5 Diluted Out.
```

PARAMETERS	UNIT	METHO	D BLANK
THALLIUM	mg/L		
ZINC	mg/L		
OIL & GREASE	mg/L		
PCB 1016	mg/L	BDL	.000200
PCB 1221	mg/L	BDL	.000200
PCB 1232	g /L	BDL	.000200
PCB 1242	ung/L	BDL	.000200
PCB 1248	mg/L	BDL	.000200
PCB 1254	mg/L	BDL	.000200
PCB 1260	mg/L	BDL	.000200
ALDRIN	ng/L	BDL	.000010
CIILORDANE	mg/L	BDL	.000200
DIELDRIN	mg/L	BDL	.000010
ENDOSULFAN I	ang/L		.000260
ENDOSULFAN II	ang/L	BDL	.000010
ENDOSULFAN SULFATE	mg/L	BDL	.000010
ENDRIN	mg/L	BDL	.000010
ENDRIN ALDEHYDE	mg/L	BDL	.000010
HEPTACHLOR	mg/L		.006040
HEPTACHLOR EPOXIDE	mg/L	BDL	.000010
METHOXYCHLOR	mg/L	BDL	.000010
PPDDD	mg/L	BDL	.000010
PPDDE	mg/L	BDL.	.000010
PPDDT	ng/L	BDL	.000010
TOXAPHENE	mg/L	BDL	.000200
a-BHC	mg/L	BDL	.000010
b-BHC	mg/L	BDL	.000010
d-BHC	mg/L	BDL	.000010
g-BHC	og/L	BDL	.000010

\

BDL Below Detection Limit

\$1 Samples contained an oil layer, values reported are for water layer only

\$3 Petroleum hydrocarbon concentrations estimated at 200 ppm

\$4 Petroleum hydrocarbon concentrations estimated at 200 ppm

\$5 Petroleum hydrocarbon concentrations estimated at 0.95 ppm

\$6 Petroleum hydrocarbon concentrations estimated at 1.2 ppm

\$6 Diluted Out

APPENDIX J

SOIL GAS REPORT AUGUST 1989

Final Report Soil Gas Survey Fire Training Area Aberdeen Proving Ground, Maryland

TABLE OF CONTENTS

Section	<u>Title</u>	Page
1	BACKGROUND	1
2 3	OBJECTIVE	1
3 4	SITE DESCRIPTION	1
5	SAMPLING STRATEGY	i
ر	a. Probe Insertion	1
	b. Purging and Sampling	1
	c. Decontamination of Sampling Equipment	2
6	ANALYSIS	2
U	a. Instrumentation	2
	b. Operation Conditions	2
	c. Analytical Method	2
	d. Quality Assurance/Quality Control	2
7	RESULTS OF ANALYSIS	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3
•	a. Vapor Concentrations	2
	b. Data Gridding/Contouring	3
8	DATA ASSESSMENT	3
	FIGURES	
Plate	Title	
1	Vicinity Map	
2	Site Map and Sampling Plan	
2 3	Isoconcentration Contours for BTX	
4	Contour Map of the Number of Total Ionizables Detected	
	APPENDICES	
Section	<u>Title</u>	
A	Results of Analysis	
В	Sample Chromatograms	

FINAL REPORT SOIL GAS SURVEY FIRING TRAINING AREA ABERDEEN PROVING GROUND, MARYLAND

- 1. <u>BACKGROUND</u>: The Waterways Experiment Station Geotechnical Laboratory has requested the Baltimore District Corps of Engineers to conduct a soil gas survey and prepare a report of findings for the Fire Training Area at Aberdeen Proving Ground, Maryland. Field work was conducted during the period of March to July 1989 with substantial delays due to above average rainfall in the area. This report was prepared by James E. Stefano, Geologist, U.S. Army Corps of Engineers, Geotechnical Engineering Branch, Baltimore District.
- 2. OBJECTIVE: The purpose of this survey was to verify the distribution and levels of contamination in the vadose zone. Information gained from this survey can be used to plan further site assessment activities such as the placement of groundwater monitoring wells. This report summarizes the procedures and findings of the soil gas survey.
- 3. SITE DESCRIPTION: The Fire Training Area has been used for fire fighting practice for an unspecified number of years. Contaminated fuels such as gasoline and jet fuel were used to fuel fires in two burn pits on the site. The 800-foot by 800-foot study areas was roughly centered on the two burn pits. The topography of the site is nearly flat with local surface drainage generally towards the north. The direction of local groundwater flow is unknown, but regional groundwater flow is towards the southeast. Depth to groundwater at the site is estimated at 15 to 20 feet. Soils at the site consist primarily of interfingered silty sands, silt, and silty clay. See Plate 1 for location of Fire Training Area.
- 4. SAMPLING STRATECY: A geometric grid of 9 rows and 9 columns (81 points) was used to cover the entire 800-foot by 800-foot study area. The geometric sampling grid was designated by cardinal numbers for the vertical (y-axis) and by an alphanumeric designation for the horizontal (x-axis), the geometric sampling grid is shown on Plate 2. Initially, vertical profiling was conducted at six sample points near the center of the area. Samples were drawn from depths of 3 feet, 5 feet, 7 feet, and 9 feet at each point. The highest levels of contamination were measured at a depth of 5 feet; therefore, 5 feet was selected as the sample depth for the survey. After completion of the 81-point grid, additional sample points were added in areas where contaminants had been identified. A total of 176 points were sampled at the 5-foot depth. See Plate 2 for locations of sample points.

5. SAMPLING EQUIPMENT AND METHODS:

- a. <u>Probe Insertion</u>. A gas-powered percussion drill was used to drive 6-foot sections of 0.75-inch outside diameter tubing into the soil. The probe tubing was constructed of type 316 stainless steel with an 0.1875-inch wall thickness. A stainless steel carriage bolt was placed in the tip of the probe prior to driving. After the tubing was driven, it was pulled back approximately 4 inches to allow the carriage bolt to drop out of the tip, exposing the probe to a small void in the soil.
- b. <u>Purging and Sampling</u>: Following insertion of the probe, the remainder of the sampling train was attached. A removable, stainless steel sampling manifold was attached to the surface end of the probe. The sampling manifold has a nipple for attaching a vacuum line on one side and septum port on the

CENAB-EN-GG 21 August 1989

opposite side. A vacuum pump was attached to the sampling manifold and the system was pumped for 3 to 5 minutes. A valve and vacuum gage within the sampling system was used to determine if subsurface vapors were adequately being obtained. The sample was then collected for analysis through the septum port in the sampling manifold using a gas-tight syringe.

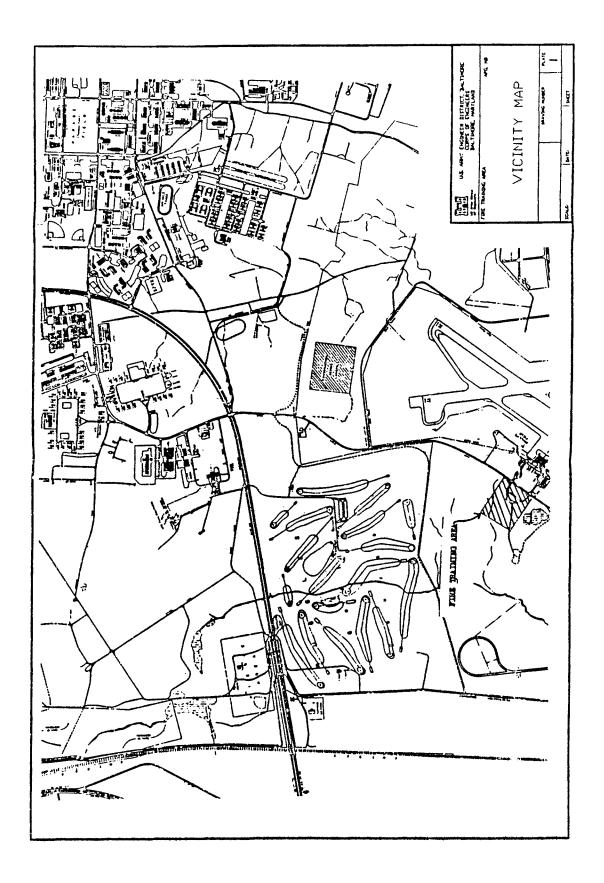
c. <u>Decontamination of Sampling Equipment</u>: The six stainless steel probes were steam-cleaned after every use. The entire system, including the sampling manifold and all fittings, was also disassembled and steam-cleaned after every six samples. The teflon tubing used to attach the vacuum pump was replaced periodically or whenever any visible signs of contamination were observed. Gas-tight syringes were cleaned after every sample with a Hamilton high temperature/vacuum syringe cleaner.

6. ANALYSIS:

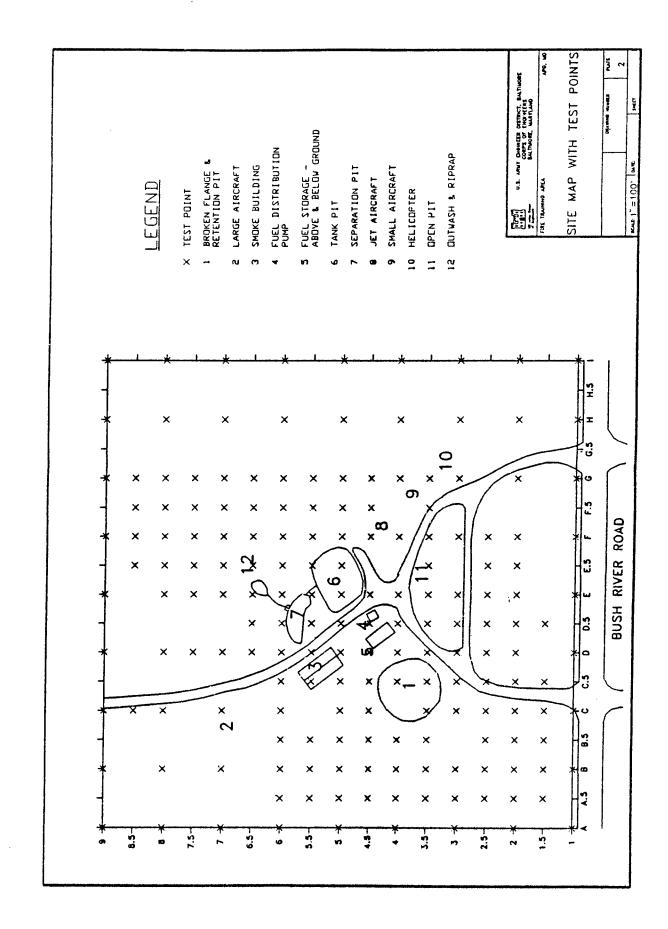
- a. <u>Instrumentation</u>: Samples were analyzed on-site using a Photovac 10S70 Gas Chromatograph (GC). The Photovac is a portable, programmable, integrating GC with a photoionization detector. The CPSIL-5 analytical column that was used has a 3.4-inch precolumn and a 29-inch analytical column.
- b. Operating Conditions: "Ultra-Zero" grade air, containing less than 0.1 parts per million (ppm) hydrocarbons was used as the carrier gas. Flows of carrier gas through the instrument were set at 15 cc per minute by using a precision gas flow meter. The isothermal oven was set at 40 degrees C. Recorder gain was set at either 10 or 20 as needed to optimize sample analysis.
- c. Analytical Method: After warm-up, the instrument was calibrated by using a vapor standard blend containing seven compounds including benzene, toluene and o-xylene. The calibration standard contained the three target compounds at a concentration of 1 ppm ±2%. Compound retention time and response data were stored in the integrator and subsequently used to make identifications and to quantify compounds in the samples. The instrument was calibrated periodically each day to ensure that the analytical system remained in calibration as the ambient temperature changed. A 50 ul sample was injected with a gas-tight syringe and the GC in manual sample mode.
- d. Quality Assurance/Quality Control: Blanks and sample duplicates were run periodically to ensure that the analytical system was producing reliable results. Fifteen blanks consisting of air sampled upwind of the burn pits and other equipment on the site were analyzed. Duplicate analysis were run at 20 sample points. Good duplication of results was observed on approximately 75% of the samples. Insufficient purging may have been responsible for the poor duplication in the other 25% of the duplicate runs. No problems with carry-over or lingering contamination on the column were observed.

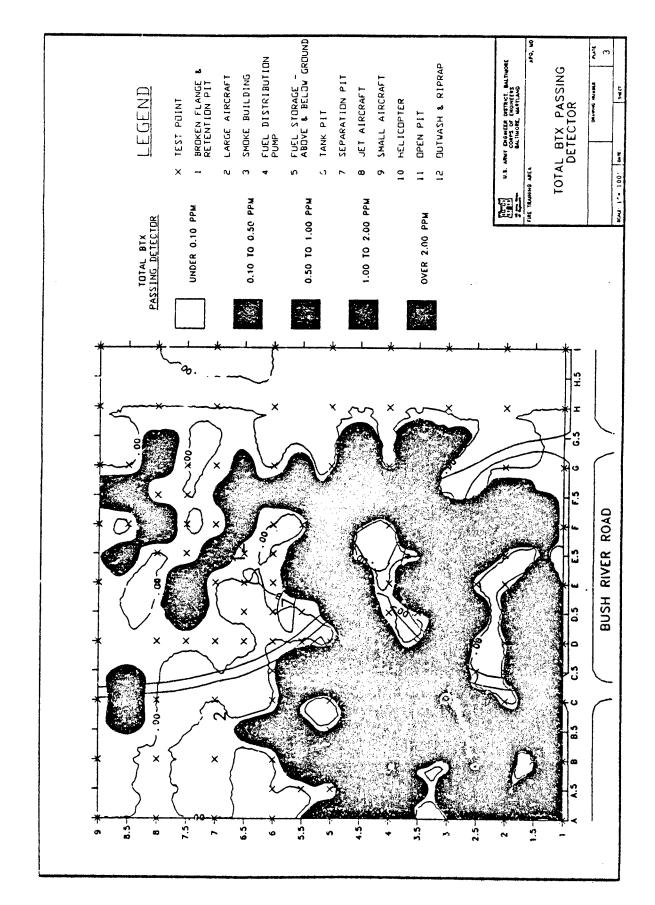
7. RESULTS OF ANALYSIS.

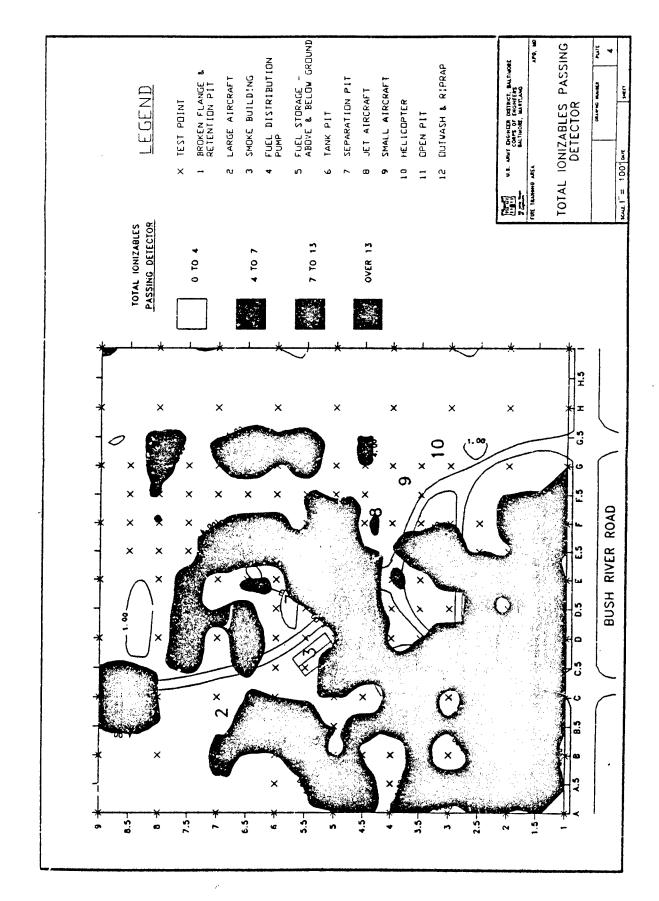
a. Vapor Concentrations: Benzene concentrations in the soil vapor ranged from <0.01 ppm to 6.85 ppm. Toluene concentrations in the soil vapor ranged from <0.01 ppm to 7.55 ppm. O-xylene concentrations in the soil vapor ranged from <0.3 ppm to 0.85 ppm. Many of the chromatograms that identified the target compounds had several early eluting peaks (unknowns) which is typical of a gasoline chromatogram (see Appendix C for sample chromatograms). All Chromatograms are on file in the Geotechnical Engineering Branch. A plot of the total number of ionizable compounds passing the detector is shown as Plate 4. The total concentrations of Benzene, Toluene, and O-xylene (BTX) was plotted and shown as Flate 3. Table 1 in Appendix A shows the results of analysis at each sample point. Significant concentrations of BTX in the soil


CENAB-EN-GG 21 August 1989

vapor were detected adjacent to the burn pits and between the burn pits and Bush River Road.


- b. <u>Data Gridding/Contouring</u>: CPS/PC version 3.1 software was used for gridding and contouring the field data into Plates 3 and 4. The "Projections" algorithm without smoothing and linear interpolation method were utilized to produce the contours.
- 8. DATA ASSESSMENT. Higher levels of soil vapor contaminants south of the burn pits suggest that surface drainage (northward) has not been a key factor in the migration of contaminants from the burn pits. Factors of a physical site-related nature such as the presence of confining layers between the contaminant source and the soil vapor sampling point may have affected the data. Changes in the amount of soil moisture and ambient temperature over the duration of the field work may have affected the results. Contaminants appear to be moving in a southeastly direction (with the groundwater) with vapors diffusing into the overlying soils. In the case of contaminants moving with the groundwater, the concentration gradient of soil vapors would be expected to increase with depth. Increasing concentrations with greater depth were not observed during vertical profiling, indicating that the site geology has the most significant influence on the movement of contaminants at this site.


James E. Stefano Geologist


FIGURES

2.3

いったのないないというできないというというというできません。

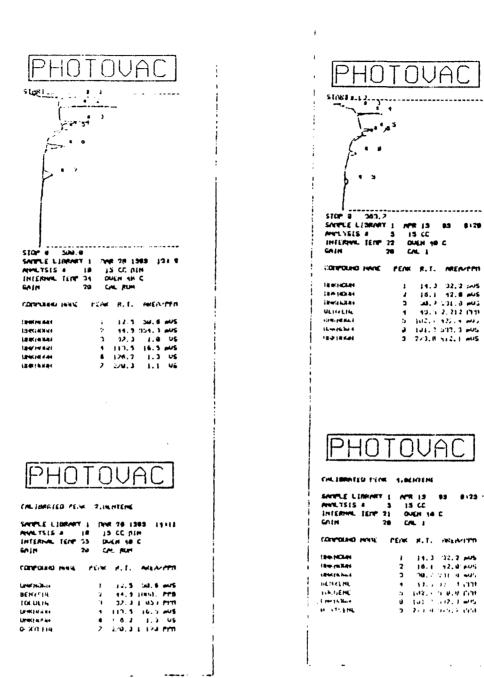
APPENDIX A
RESULTS OF ANALYSIS

TABLE 1

GRID LOCATION	BENZENE	VOLATILI TOLUENE	ES IN PPM O-XYLENE	TOTAL BTX	TOTAL IONIZABLES PASSING DETECTOR
A. 0-1.0 A. 0-2.0 A. 0-3.0 A. 0-4.0 A. 0-5.0 A. 0-6.0 A. 0-7.0 A. 0-8.0 A. 0-9.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.01 1.06 0.0 1.02 0.95 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.01 1.06 0.0 1.02 0.95 0.0 0.0	2 4 3 4 4 4 3 3 3 3
A.5-1.5 A.5-2.0 A.5-2.5 A.5-3.0 A.5-3.5 A.5-4.0 A.5-4.5 A.5-5.0 A.5-5.5	0.69 0.0 2.66 0.16 0.25 0.0 0.08 0.05 0.0	0.84 0.26 0.0 0.31 0.0 0.22 0.29 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.53 0.26 2.66 0.47 0.25 0.22 0.37 0.05 0.0	6 5 7 5 7 3 6 6 4 3
B.O-1.0 B.O-1.5 B.O-2.0 B.O-2.5 B.O-3.0 B.O-3.5 B.O-4.0 B.O-4.5 B.O-5.0 B.O-5.5 B.O-6.0 B.O-7.0 B.O-8.0 B.O-9.0	0.35 0.02 0.0 0.07 0.0 0.13 0.0 0.01 0.0 0.27 0.0 0.0	7.55 0.0 0.97 0.19 0.15 0.33 1.02 0.19 1.03 0.18 0.01 0.02 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	7.90 0.02 0.97 0.26 0.15 0.46 1.02 0.20 1.03 0.45 0.01 0.02	3 7 7 5 2 5 2 4 4 4 5 4 4 3 3
B.5-1.5 B.5-2.0 B.5-2.5 B.5-3.5 B.5-4.0 B.5-4.5 B.5-5.0 B.5-5.5 B.5-5.5	2.45 0.25 6.85 3.37 0.14 0.07 0.11 0.11	0.58 0.10 0.49 0.0 0.62 0.80 0.0 0.15	0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.03 0.35 7.34 3.37 0.76 0.87 0.11 0.26 0.33	6 5 10 7 5 5 4 5 7
C.0-1.0 C.0-1.5 C.0-2.0 C.0-2.5 C.0-3.0 C.0-3.5 C.0-4.5 C.0-5.0 C.0-6.0 C.0-7.0 C.0-8.0 C.0-8.5 C.0-9.0	0.0 0.52 0.0 0.66 0.0 0.86 0.0 0.0 0.0 0.0	0.88 0.0 0.0 0.63 0.0 0.73 0.47 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.88 0.52 0.0 1.29 0.0 1.57 0.47 0.0 0.0 0.0 0.0	6 6 4 7 3 9 3 4 4 3 4 7 5

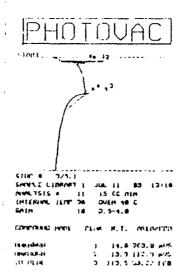
TABLE 1 (continued)

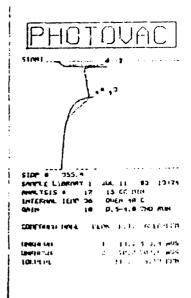
GRID LOCATION	BENZENE	VOLATI TOLUENE	LES IN PPN O-XYLENE		TOTAL IONIZABLES PASSING DETECTOR
C.5-1.5 C.5-2.0 C.5-2.5 C.5-3.0 C.5-3.5 C.5-4.0 C.5-4.5 C.5-5.0 C.5-5.5	3.48 0.03 0.0 0.44 0.05 0.02 1.86 1.07 0.66	0.0 0.09 0.0 0.74 1.06 0.49 0.50 0.66 6.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.48 0.12 0.0 1.18 1.11 0.51 2.36 1.73 0.66 0.06	10 4 4 8 10 5 8 8 2 3
D.0-1.0 D.0-2.0 D.0-2.5 D.0-3.0 D.0-3.5 D.0-4.0 D.0-4.5 D.0-5.0 D.0-5.5 D.0-6.0 D.0-6.5 D.0-7.0 D.0-7.5 D.0-7.0	0.0 0.02 0.0 0.06 0.0 0.0 0.0 0.0 0.0 0.	0.11 9.01 0.04 1.30 0.03 0.39 0.60 0.0 0.03 0.0 0.01 0.02 0.02	0.0 0.03 0.0 0.0 0.0 0.0 0.85 0.0 0.0 0.0 0.0	0.11 0.06 0.04 1.30 0.09 0.39 1.45 0.0 0.03 0.0 0.02 0.01 0.05 0.02	5 7 4 6 4 3 21 4 3 3 6 3 6 2 3
D.5-1.5 D.5-2.0 D.5-2.5 D.5-3.0 D.5-3.5 D.5-4.0 D.5-4.5 D.5-5.0 D.5-5.5 D.5-5.5	4.97 0.21 0.0 0.0 0.0 0.0 0.47 0.26 0.0	0.0 0.04 0.73 0.05 0.10 0.03 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.97 0.25 0.73 0.05 0.10 0.03 0.47 0.26 0.0 0.0	8 4 5 3 4 3 7 9 4 2 5
E.0-1.0 E.0-2.0 E.0-2.5 E.0-3.0 E.0-3.5 E.0-4.0 E.0-4.5 E.0-5.0 E.0-5.5 E.C.6.0 E.0-6.5 E.0-7.0 E.0-7.5 E.0-8.0 E.0-9.0	0.0 0.0 0.0 1.25 0.0 0.0 0.12 0.0 0.0 0.0	0.01 0.0 0.05 1.14 0.0 0.0 0.37 0.0 0.18 0.04 0.0 0.02 0.32 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.01 0.0 0.05 1.14 1.25 0.0 0.37 0.09 0.30 0.04 0.0 0.02 0.36 0.0	4 5 4 5 3 1 11 10 13 2 1 3 5 2

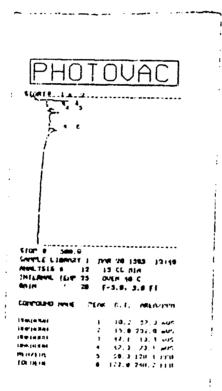

TABLE 1 (continued)

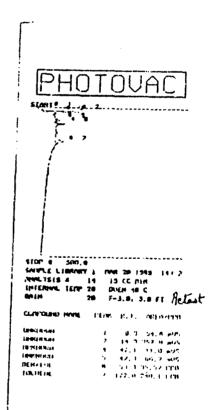
GRID LOCATION	BENZENE	VOLATI TOLUENE	LES IN PPM 0-XYLENE	TOTAL BTX	TOTAL IONIZABLES PASSING LETECTOR
E.5-2.0 E.5-2.5 E.5-3.5 E.5-5.0 E.5-5.5 E.5-6.0 E.5-6.5 E.5-7.0 E.5-7.5 E.5-8.0 E.5-8.5	0.0 0.0 0.02 0.0 0.31 0.0 0.0 0.08 0.04 0.0	0.06 0.72 0.08 0.20 0.0 0.01 0.07 0.10 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.06 0.72 0.10 0.20 0.31 0.01 0.07 0.18 0.04 0.0	4 4 8 4 8 6 9 8 3 3
F.0-1.0 F.0-2.0 F.0-2.5 F.0-3.0 F.0-3.5 F.0-4.0 F.0-4.5 F.0-5.0 F.0-5.5 F.0-6.0 F.0-6.5 F.0-7.0 F.0-7.5 F.0-8.0 F.0-8.5 F.0-9.0	0.0 0.54 0.0 0.0 0.0 0.0 1.37 0.0 0.0 0.03 0.0 0.0	0.02 1.08 0.04 1.16 1.88 0.0 0.19 0.44 0.0 0.13 0.03 0.03 0.03	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.02 1.08 0.58 1.16 1.88 0.0 0.19 1.81 0.0 0.0 0.16 0.06 0.0 0.44 0.0	6 5 3 4 3 2 17 4 5 5 4 3 4 3
F.5-3.5 F.5-4.5 F.5-5.0 F.5-5.5 F.5-6.0 F.5-6.5 F.5-7.0 F.5-7.5 F.5-7.5 F.5-8.0 F.5-8.5	0.0 0.0 0.0 0.27 0.0 0.0 0.0 0.0 0.04 0.26	0.17 1.83 0.29 0.21 0.15 0.15 0.11 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.17 1.83 0.29 0.48 0.15 0.15 0.11 0.0 0.04	4 3 3 4 3 3 2 4 3
G.0-1.0 G.0-2.0 G.0-3.0 G.0-3.5 G.0-4.0 G.0-4.5 G.0-5.0 G.0-5.5 G.0-6.0 G.0-6.5 G.0-7.0 G.0-7.5 G.0-8.0 G.0-8.5 G.0-9.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0	0.03 0.0 0.0 1.99 0.0 1.67 0.0 0.20 0.0 0.09 0.0 0.05 0.05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.03 0.0 0.0 1.99 0.0 1.67 0.0 0.24 0.0 0.13 0.03 0.0 0.23 0.0	4 2 2 3 3 4 3 5 4 6 4 3 5 2 2

TABLE 1 (continued)

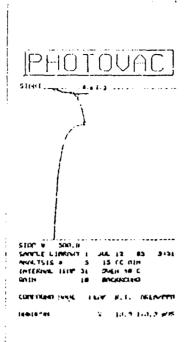

GRID		VOLATI	LES IN PPM		TOTAL IONIZABLES
LOCATION	BENZENE	TOLUENE	O-XYLENE	TOTAL BTX	PASSING DETECTOR
н.0-1.0	0.0	0.0	0.0	0.0	2
H.O-2.0	0.0	0.0	0.0	0.0	2
H.O-3.0	0.0	0.0	0.0	0.0	2
H.O-4.0	0.0	0.6	0.0	0.0	2
H.O-5.0	0.0	0.0	0.0	0.0	2
H.O-6.0	0.0	0.0	0.0	0.0	3
H.O-7.0	0.0	0.0	0.C	0.0	
H.O-8.0	0.0	0.0	0.0	0.0	2 3
H.O-9.0	0.0	0.0	0.0	0.0	2
		- •	- • •	-,-	_
I.0-1.0	0.0	0.0	0.0	0.0	2
1.0-2.0	0.0	0.0	0.0	0.0	$\bar{2}$
I.0-3.0	9.0	0.0	0.0	0.0	ĩ
1.0-4.0	0.0	0.0	0.0	0.0	3
1.0-5.0	0.0	0.0	0.0	0.0	2
I.0-6.0	0.0	0.0	0.0	0.0	ī
1.0-7.0	0.01	0.6	0.0	0.01	4
1.0-8.0	0.0	c.o	0.0	0.0	2
1.0-9.0	0.0	0.0	0.0	0.0	4
		- • •		~.~	-7

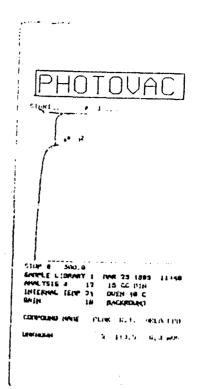

APPENDIX B
SAMPLE CHROMATOGRAMS

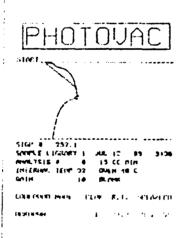



Typical Chromatograms of calibration runs.

STORY OF THE STORY









Typical Chromatograms of soil vapor samples with duplicate run.

Typical Chromatograms from blank/backround samples.

APPENDIX K

SOIL CHEMICAL DATA SURFACE SOIL SAMPLES NOVEMBER 1989

PARAMETER	UNIT		FTAB11		FTAB12		FTAB21		FTAB22
1.2.4-TRICHLCROBENZENE	mg/kg	BDL	4.000030	BDL	2.000000	BDL	8.000003	BDL	5,000000
1,2-DICHLOROBENZFNE	mg/kg	BOL	4.000000	BDL	2.000000	BCL	8.000000	BDL	5.000000
1.2-DIPHENYLHYDRAZINE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8.000000	BDL	5.000000
1,3-DICHLOROBENZEME	mg/kg	BDL	4.000000	BDL	2,900000	BDL	8.000000	BDL	5.000000
1.4-DICHLOROBENZENE	mg/kg	BDL	4.000000	BOL	2.000000	BOL	3.000000	BCL	5.000000
2.4.5-TRICHLOROPHENOL	mg/kg	BDL	4 00000G	BUL	2.000000	BDL.	8.000000	BDI.	5.000000
2.4.6-TRICHT.OROPHENOL	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8.000000	EDL	5.000000
2.4-DICHLOROPHENOL	mg/kg	BUL	4.000000	BDL	2.000000	BDL	8.000000	EDL	5.000000
2,4-DIMETHYLPHENOL	mg/kg	BDL	4.000000	BDL	2.00000	BDL	8.000000	EDL	5.000000
2,4-DINITROPHENCL	mg/kg	BDL	20.000000	BOL	10.000000	BDL	40.000000	BDL	25.000000
2-CHLORONAPHTHALENE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8,000000	BDL	5.000000
2-CHLOROPHENOL	mg/kg	BDL	4.000000	BDI.	2.000600	BDI.	8.000000	BDL	5.000000
2-METHYL-4,6-DINOTROPHENGL	mg/kg	BDL	20.000000	BCL	10.000630	BDL	40.000000	BDL	25.000000
2-MFTGYLNAPHTHALENE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8.00000	BDL	5,000000
2-METHYLPHENOL	mg/kg	BDL	4.000000	BOL	2.000000	5DL	8.000000	BDL	5.000000
2-NITROANILINE	mg/kg	BOL	20,000000	BDL	10.000000	BDL	40.000000	POL	25,000000
2-NITROPHENOL	iag/kg	BDL	4.000000	BDL	2.000000	BDL	8.000000	BDL	5.000000
3,3-DICHLOROBENZIDINE	ng/kg	BDL	8.000000	BDL	4.000000	BDL	16.600000	BOL	10.000000
3-NITROAMILINE	mg/kg	BDL	20.000000	BDL	10.000000	JDL	40,000000	BDL	25.000000
4-BROMOPHENYL ETHER	mg/kg	BDT.	4.000000	BDL	2.000000	BOL	8,000000	BDL	5.000000
4-CHLORO-3-METHYLPHENOL	mug/kg	BDL	8,000000	BDL	4.600000	BDL	16,000000	BDL	10.000000
4-CHLOROANILINE	mg/kg	BDL	8.000000	BDL	4.000000	BD1.	16.000000	BDL	10.000000
4-CHLOROPHENYL PHENYL ETHER	mg/kg	BDL	4,000000	BOL	2.000000	3DL	8,000000	BDL	5.000000
A -METHYLPHENOL	mg/kg	BUL	4,350000	BDL	2.000000	DOL	8.000000	BDL	5.000000
4-NITROANILINE	mg/kg	3DL	29.000000	BDL,	10.000000	BDL	40.000000	BDL	25.00C000
4-NITROPBENOL	mg/kg	BDL	20,000000	BDL	10.000000	adl	40.000000	BDL	25.000000
ACENAPHTHENE	mg/kg	BDL	4.000000	BOL	2.000000	BOL	8.000000	BDL	5,000000
ACENAPHTHYLENE	mg/kg	EDL	4.000000	BDL	2.000000	BDL	8.000000	BCL	5.00GD00
ANILINE	mg/kg	BDL	8.000000	BOL	4.000000	BDL	16.000000	BDL	10.000000
ANTHRACENE	mg/kg	BDL	4.000000	BDL	2.000000	BDI.	8,000000	BDL	5.000000
BFNZIDINE	mg/kg	PDL	20,000000	BOL	10.000000	BDL	40.000000	BDL	25.000000
BENZO(a)ANTHRACENE	mg/kg	BDL	4.000000	BUL	2.000000	BDL	8.000000	BDL	5,000000
BENIC(a)PYRENE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8.000000	BDL	5.000000
ZENZO(b)FLUORANTHENE	mg/kg	BDL	+,000000	BDL	2.000000	BDL	8.000000	BDL	5.000000
BENZO(g,h,i)PERYLENE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8.000000	BDL	5.000000
BENZO(k)FLUORAPTHENE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8.000000	BOL	5.000000
HENEOIC ACID	mg/kg	BDL	20.000000	BDL	10.000000	BDL	40.000000	BDL	25.000000
BENZYL ALCOHOL	ong/kg	BDL	3.000000	BOL	4.000000	BDL	16.000000	BDL	10.000000
BIS (2-CHLOROETHOXY) METHANE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8.000000	BDL	5.000000
BIS(2-CHLOROETHYL)FTHER	mg/kg	BDL	4.000000	BDI.	2.000000	BDL	8.000000	BDL	5.000000
BIS(2-CHLOROISOPROPYL)ETHER	m/g/k/g	BDL	4.000000	BDL	2.000000	3DL	8.000000	BDL	5.000000
BIS(2-ETHYLHFXYL)PHTHALATE	mg/kg	TCE	4.000000	BDL	2.000000	BOL	8.000000	RDL	5.000000
BUTYLAEAZYLPHTHALATE	mg/kg	BDL	4.000000	BOL	2.000000	BCL	8.000000	BDL	5.000000
CHRYSENE	ing/kg	BDL	4.000000	BOL	2.000000	BDL	8,000000 8,000000	3DL BDL	5.000000 5.000000
DI-H-OCTYLPHTHALATE DIBENZO(a,h)ANTHRACENE	mg/kg	BDL	4.600000	BOL	2.000000	BDL	8.000000	BOL	5.000000
	mg/kg		4.000000	BDL	2.000000	BDL	8.000000	BOL	5.000000
DIBENZOFURAN DIBUTYLPHTHALATE	mg/kg mg/kg	BDL	4.000000	BDL	2.000000	BOL	8.000000	BDI.	5.000000
DIETHYL PHTHALATE	mg/kg .mg/kg	BOL	4.000000	BCL	2.000000	BOL	8.000000	BDL.	5.000000
DIMETHYL PHTHALATE	nig/kg nig/kg	BOL	4.000000	BDL	2.000006	FDL	8.000000	BDL	5.000000
FLUORANTHENE	mg/kg	BDL	4.000000	BDI.	2.000000	BDL	8.000000	BDL	5.000000
FLUCRENE	mg/kg	BOL	4.000000	BDL	2.000000	BDL	8.000000	BDL	5.000000
HEXACHLOROBENZENE	mg/kg	BDL	4.000000	BOL	2.000000	BDL	8.000000	BUL	5.000000
HEXACHLOROBUTADIENE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8.000000	POL	5.000000
HEXACHLOPOCYCLOPENTADIENE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8.000000	BDL	5.000000

BDL NA +7 Below Detection Limit Not Analyzed Diluted Out

PARAMETER	UNIT		FTAB11		FTAB12		FTAB21		FTAF22
HEMACHLOROETHANE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8,000000	BDL	5.000000
INDENU(1,2,3-:,d)PYRENE	mg/kg	BDL.	4.000000	apl	2.000000	BDL	8.000000	BDL	5.000000
ISOPHORONE	mg/kg	EDL	4.000000	BDL	2.600000	BOL	8.000000	BDL	5.000000
N-NITROSO-DI-METHYLAMINE	mg/kg	BDL	4.000000	BDL	2.000000	BOL	8.000000	BDL	5.000000
N-NITROSO-DI-N-PROPYLAMINE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	0.00000	BDL	5.000000
N-NITROSO-D1-PHFNYLAMINE	mg/kg	BDL	4.000000	BDL	2.000000	BDL.	8.000000	BDL	5.000000
NAPHTHALENE	mg/kg	BDL	4.000000	BDL	2.000000	BDL	8.000000	BDL	5.000000
NITROBENZENE	mg/kg	BDL	4.000000	BDL	2.000000	BOL	8.000000	BDL	5.000000
PENTACHLOROPHENOL	mg/kg	BDL	20.000000	BDL	19.000000	BOL	40.000000	BDL	25.000000
PHENANTHRENE	mg/kg	BDL	4.000000	BDL	2.990000		2.000000	BDL	5.000000
PHENOL	mg/kg	BDL	4.000000	BDL	2,000000	BDL	8.000000	BDL	5,000000
PYRENE	mg/kg	BDL	4.000000	BDL	2.000000	BDL.	8.000000	BDL	5.000000
2,4-DINITROTOLUENE	mg/kg	BCL	4.000000	BDI.	2.000000	BOL	8.000000	BDL	£,000000
2,6-DINITROTOLUENE	mg/kg	BDL	A.000000	BDL	2.000000	BDI.	8.000000	BDL	5.000000
ARTIMONY	mg/kg	BDL	. 500000	BDL	.499000	BDL	.499000	BDL	.499000
ARSENIC	mg/kg		6.00000C		4.490000		3.090000		2,490000
BERYLLIUM	mg/kg		1.400000		1.300000		1.200000		11.000000
CADMIUM	mg/kg		17.300000		5.4900C0		. 629000		.669000
CHROMIUM	.mg/kg		28.000000		23.000C00		16.700000		17.700000
COPPER	mg/kg		74.100000		38.20000C		13.100000		13.100000
LEAD	mg/kg		352.000000		126.000000		96.500000		165.000000
MERCURY	mg/kg	BDL	. 100000	BDL	.100000	BOL	.100000	BDL	.100000
NICKEL	mg/kg		26.700000		15.600000		10.600000		11.500000
3ELEN1UM	mg/kg	BDL	. 500000	BDL	.499000	BDL	.499000	BDL	.493000
SILICON	mg/kg		25.800000		25,900000		31.800000		24.900000
SILVER	mg/Fg		. 200000	BDL	.100000		.299000	BDL	.100000
THALLIUM	mg/kg	BDL	.100000	BOL	.100000	BDL.	. 100000	BDL	. 100000
ZINC	mg/kg		299.000000		138.000000		64.700000		71.000000
PCB 1016	mg/kg	BOL	. 003000	BDL	.003000	BDL	.0033000	BUL	.003000
PCB 1221	mg/kg	BDL	.003000	BOL	.203000	BOL	.003000	BDL	.003000
PCB 1232	mg/kg	BDL	.003000	BDL	.003000	BDL	.003000	BDL	.003000
PCB 1242	mg/kg	BDL	.003000	BDI.	.003000	BCL	.003000	BDL	.003000
PCB 1248	mg/kg	BDL	. 000300		.003000	RDL.	.003000	BDL	.003000
PCB 1254	mg/kg	BDL	.003000	BDL	.003003	BDL	.003000	BDL	.003000
PCB 1260	mg/kg		.340000		.340000	BDL	.003000		. 280000
ALDRIN	mg/kg	BOL	.000300	BDL	.000300	BDL.	.000300	BDL	.000366
CHLORDANE	mg/kg	BDL	.003000	BDL	.003000	BDI.	.003000	BDL	.003000
DIELDRIN	mg/kg	BDL	.000300	BDL	.000300	PDF	.000300	BDL	.000300
ENDOSULFAN I	mg/kg	BDL	.000300	PDL	.000300	BDL	,000300	BDL	.000300
ENDOSULFAN II	mg/kg	BDL	. 200300	BDL	.000300	BDL	.000300	BDL	. 000300
ENDOSULPAN SULPATE	mg/kg	BD!.	.000300	BDI.	.000300	BDL	.000300	BDL	.000300
ENDRIN	mg/kg	BOL	.000000	BDL	.000306	BDL	.000300	BDL	.000300
ENORIN ALDEHYDE	mg/kg	BUT	.000300	BOL	.000300	BDL	,000300	BDL	.000300
HEPTACHLOR	mg/kg	BDL	.000330	108	.001000 .00300	BDL	000300	BDL BDL	.00030C
HEPTACHLOR EPOXIDE	mu;/kg	BDL	.000300	JOE				BDL	.000300
METHOXYCHLOR	mg/kg	BD:.	.000300	BDL	.000300	BOL BOL	.000300	שועם	.004800
PPDDD	mg/kg		.031000		.011000	BOL	.000300		.003400
PPDDE PPDDT	mg/kg mg/kg	BDL	.004200	BOL	.000300	BOL	.000300		,015600
TOXAPHENE	mg/kg	BDL	.003000	BOL	.003000	BOL	.003000	BDL	.003000
n-BHC	mg/kg	BDL	.000300	BDL	.000300	BDL	.000000	BDL	,000300
5-BBC	mg/kg mg/kg	BDL	.000300	BOL	.000300	BDL	.000300	BDL	.000300
4-BBC	me/kg	BDL	.000300	SDL	.630300	POL	.000300	BDL	,000300.
a-BHC	mg/kg mg/kg	BOL	.000300	BDL	.000300	BDL	.000300	BDL	,000300
1,1,1-TRICHLOROETHANE	ng/kg	BOL	.023000	BDL	.025000	BDL	. 925000	BDL	.025000
-, -,								_	

Below Detaction Limit Not Analyzed Diluced OnE BDL NA #7

できる。 これのできる はない ないのか はいかい こうかん あんだい かんしょう

PARAMETER	UNIT		FTAB11		FTAB12		FTAB21		FTAB22
1,1,2,2-TETRACHLOROETHANE	mag/kag	BDL	.025000	BDL	.025000	BDL	025000	BOL	.025000
1,1,2-TRICHLOROETHANE	mg/kg	BDL	.025000	BDL	. 025000	BDL	.025000	BDL	.025000
1,1-DICHLOROETHANE	mg/kg	BDL	.025000	BDL	.025000	BDL	. 025000	BDL	.025000
1,1-DICHLOROETHENE	mg/kg	BDL	.025000	BDL.	.025000	BDL	.025000	BDL	.025000
1,2-DICHLOROETHANE	mg/kg	BDL	. 025000	BOL	.025000	BDL	.025000	BDL	.025000
1,2-DICHLOROPROPANE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
2-BUTANONE	ong/kg	BDL	. 500000	BDL	. 500000	BDL	. 500000	BDL	.500000
2-CHLOROETHYLVINYLETHER	mg/kg	8DL	.050000	BDL	.050000	BDL	.050000	BOL	.050000
2-HEXANONE	mg/kg	BDL	. 250000	BDL	.250000	BDL	.250000	BDL	.250000
4-METHYL-2-PENTANONE	mg/kg	BDL	.250000	BDL	.250000	BDL	.250000	BDL	. 250000
ACETONE	mg/kg	BDL	. 500000	BCL	. 500000	BDL	.500000	BDL	. 500000
ACROLEIN	mg/kg	EDL	. 500000	BDL	.500000	BDL	. 500000	BDL	. 500000
ACRYLONITRILE	mg/kg	BOL	. 500000	BDL	.500000	BDL	. 500000	BDL	. 500000
BENZENE	mg/kg	3DL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
BROMODICHLOROMETHANE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
BROMOFORM	mg/kg	BDL	.0250CD	BDL	.025000	BDL	.025000	BDL	.025000
EROMOMETHANE	mg/kg	BDL	.050000	BDL	.050000	BDI.	. 050000	EDL	.050000
CARBON TETRACHLORIDE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BCL	.025000
CARBONDISULFIDE	mg/kg	BDL	.025000	BDL	. 025000	BDL	.025000	BDL	.025000
CHLOROBENZENE	mg/kg	BDI.	.025000	BOL	.025000	BDL	.025000	BDL	.025000
CHLOROETHANE	mg/kg	BDL	.050000	BDL.	.050000	BOL	.050000	BDL	.050000
CHLOROFORM	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
CHI.ORCMETHANE	mg/kg	BDL	.050000	BDL	.050000	BDL	.050000	BDL	.050000
CIS-1,2-DICHLOROETHENE	mg/kg	BDL	. 025000	BDL	.025000	BDL	.025000	BDL	.025000
CIS-1,3-DICHLOROPROPENE	mg/kg	BDL	. 025660	BDL	.025000	BDL	.025000	BDL	.025000
DIBROMOCHLOROMETHANE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
ETHYLBENZENE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
METHYLENE CHLORIDE	mg/kg		.042000		.038000		.150000		.069000
STYRENE	mg/kg	BDL	.025000	BDL	.025006	BDL	.025000	ZDL	.025000
T-XYLENE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
TETRACHLOROETHENE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
TOLUENE	mg/kg	BDL	.025000	PCT	.025000	BDL	.025000	BDL	.025000
TRANS-1, 2-DICHLOROETHENE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BCL	.025000
TRANS-1,3-DICHLOROPROPENE	mg/kg	BDL	.025000	BDL.	.025000	BDL	.025000	BDL	.025000
TRICHLOROETHENE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
VINYL ACETATE	mg/kg	BDL	. 250000	BCL	. 250000	BDL	.250000	BDL	. 250000
VINYL CHLORIDE	nig/kg	BDL	.050000	BDL	. 350000	BDL	. 05,0000	BDL	.050000
2,4,6-TRIBROMOPHENOL-S	2		91.600000		71.600000	#7	.000000		59.000000
2-FLUOROBIPHENYL-S	Z		60.100000		55.700000		70.400000		85.500000
2-FLUOROPHENOL-S	I		50.000000		40.100000		35.200000		56.800000
NITROBENZENE-D5-S	I		58.900000		53.200000		47.40000G		85.300000
P-TERPHENYL-D14-S	z	1	34.000000		71.600000	# 7	.000000	#7	.0000000
PHENOL-D5-S	2		46.400000		47.300000		53.700000	• •	75.300000
1,2-DICHLOROETHANE-D4-S	Z	1	11.000000	1	04.000000		63.700000		102.000000
4-BROMOFLUOROBENZENE-S	1	1	14.000000		10.000000		112.000000		93.900000
TOLUENE-D8-S	Z	1	01.000000		95.200000		94.500000		90.300000
									20,000000

BDL NA #7 Below Detection Limit Not Analyzed Diluted Gut

PARAMETER	UNIT		FTAB23	FTAB24	FTAB2001	FTAB2DD2
1,2,4-TRICHLGROBENZENE	mg/kg	BDL	8.000000	BDL 25.003000	BDL 25.000000	BDL 25.000000
1.2-DICHLOROBENZENE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
1,2-DIPHENYLHYDRAZINE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BUL 25.000000
1,3-DICHLOROBENZENE	mg/kg	BOL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
1,4-DICHLOROBEMZENE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
2,4,5-TRICHLOROPHENOL	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
2,4,6-TRICHLOROPHENOL	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
2,4-DICHLOROPHENOL	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000C00	BDL 25.000000
2,4-DIMETHYLPHENOL	mg/kg	8DL	8.000000	BDL 25.000000	BDL 2J.000000	BDL 25.000000
2.4-DINITROPHENOL	mg/kg	BDL	40.000000	BDL 125.000000	BDL 125.000000	BDL 125.000000
∠ CHLORONAPHTHALENE	mg/kg	BDL	8.000000	EDL 25.000000	BDL 25.000000	BDI. 25.000000
2-CHLOROPHENOL	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
2-METHYL-4,6-DINOTROPHENOL	mg/kg	BDL	40.000000	BDL 125.000000	BDL 125.000000	BDL 125.000000
2-METHYLNAPHTHALENE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
2-METHYLPHENOL	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
2-NITROANILINE	mg/kg	EDL	40.000000	BDL 125 000000	BDL 125.000000	BUL 125.000000
2-NITROPHENOL	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
3,3-DICHLOROBENZIDINE	mg/kg	BDL	16.000000	BDL 50.000000	BUL 50.000000	BDL 50.000000
3-NITROANILINE	mg/kg	BDL	40.000000	BDL 125.000000	PDL 125.000000	BDL 125.000000
4-BROMOPHENYL ETHER	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25,000000
4-CHLORO-3-METHYLPHENOL	mg/kg	BDL	16.000000	BDL 50.000000	BDL 50.000000	BDL 50.000000
4-CHLOROANILINE	mg/kg	BDL	16.000000	BDL 50.000000	BDL 50.00000	BDL 50.000000
4-CHLOROPHENYL PHENYL ETHER	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.300000	BDL 25.000000
4-METHYLFHENOL	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
4-NITROANILINE	mg/kg	BDL	40.000000	BDL 125.000000	BDL 125.000000	BDL 125.000000
4-NITROPHENOL	mg/kg	BDL	40.000000	BDL 125.000000	BDL 125.000000	BDL 125.000000
ACENAPHTHENE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
ACENAPHTHYLENE	mg/kg	BDL	8.000000	BCL 25.000000	BDL 25.000000	BDL 25.000000
ANTIDAGENE	mg/kg	BDL	16.000000	BDL 50.000000	BDL 50.000000 BDL 25.000000	BDL 50.000000 BDL 25.000000
ANTHRACENE	mg/kg	BDL BDL	8.000000 40.000000	BDL 25.000000 BDL 125.000000	BDL 25.000000 BDL 125.000000	BDL 125.000000
BENZIDINE BENZO(a)ANTHRACENE	mg/kg mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
BENZO(a) PYRENE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
BENZO(b)FLUORANTHENE	mg/kg	BDL	8.000000	3D1. 25.000000	BDL 25.000000	BDL 25.000000
BENZO(g,h,i)PERYLENE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
BENZO(k)FLUORANTHENE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25 000000	BDL 25.000000
BENZOIC ACID	mg/kg	BDL	40.000000	BDL 125.000000	BDL 125,000000	BDL 125.000000
BENZYL ALCOHOL	mg/kg	BDL	16.000000	BDL 38.000006	BDL 50'.000000	BDL 50.000000
BIS (2-CHLOROETHOXY) METHANE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25,000000
BIS(2-CHLOROETHYL)ETHER	mg/kg	BOL	8.000000	BDL 25.000000	BDL 25.000000	BOL 25.000000
BIS(2-CHLOROISOPROPYL)ETHER	mg/kg	BDI.	8.000000	BDL 25.000000	BDL 25,000000	BDL 25.000000
BIS(2-ETHYLHEXYL)PETHALATE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25,000000
BUTYLBENZYLPHTHALATE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
CHRYSENE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
DI-N-OCTYLPHTHALATE	mg/kg	BDL	8,000000	BOL 25.000CGQ	BDL 25.000000	BDL 25.000000
DIBENZO(a,h)ANTHRACENE	mg/kg	BDL	8.000000	BDL 25.007000	BDL 25.000000	BDL 25.000000
DIBENZOFURAN	mg/kg	BCL	8.000000	BOL 25.000000	BDL 25.000000	BDL 25.000000
DIBUTYLPHTHALATE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25.000000
DIETHYL PHTHALATE	mg/kg	BOL	8.00000	SDL 35.000000	BDL 25.000000	BDL 25.000000
DIMETRYL PHTHALATE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	EDL 25.000000
FLUORANTHENE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25.000000	BDL 25 000000
FLUORENE	mg/kg	BDL BDI	8,000000	BDL 25.000000	BDL 25.000000	BDL 25,000000
HEXACHLOROBENZENE	mg/kg	BDL	8.000000	BDL 25.000000	BDL 25,000000 BDL 25,000000	BDL 25,000000
HEXACHLOROBUTADIENE	mg/kg	SDL BDI	8.000000 8.050000	BDL 25.000000		BDL 25.000000
HEXACHLOROCYCLOPENTADIENE	mg/kg	BDL	8.050000	BDL 25.000000	BDL 25:0000CG	BDL 25.000000

Below Detection Limit Not Analyzed Diluted Out DDL. NA ¥7

PARAMETER	UNIT		FTAB23		FTAB24		FTAB2DD1	1	TAB20D2
HEXACHLOROETHANE	mg/kg	BDL	8.000000	BDL	25.000000	BDL	25.000000	BDL	25,000000
INDENO(1,2,3-c,d)PYRENE	mg/kg	BDL	8.000000	BDL	25.300000	BDL	25.000000	BDL.	25.000000
ISOPHORONE	mg/kg	BDL	8.000000	BDL	25.000000	BDL	25.000000	BDI.	25.000000
N-NITROSO-DI-METHYLAMINE	mg/kg	BDL	8.000000	BDL	25.000000	BDL	25.000000	BDL	25,000000
N-NITROSO-DI-N-PROPYLAMINE	mg/kg	BDL	8.000000	BDL	25.000000	BDL	25.000000	BDL	25.000000
N-NITROSO-DI-PHENYLAMINE	mg/kg	BDL	8.000000	BDL	25.000000	BDL	25.000000	BDL	25,000000
NAPHTHALENE	mg/kg	BDI.	8.000000	BDL	25.000000	BDL	25.000000	BDL	25.000000
NITROBENZENE	mg/kg	BDL	8.000000	BDL	25.000000	BDL	25.000000	BDL	25.000000
PENTACHLOROPHENOL	mg/kg	BDL	40.000000	BDL	125.000000	BDL	125.000000	BDL	125.000000
PHENANTHRENE	mg/kg	BDL	8.000000	BDL	25.000000	BDL	25.000000	BDL	25.000000
PHENOL	mg/kg	BDL	8.000000	BDL	25.000000	BDL	25.000600	BDL	25.000000
PYRENE	mg/kg	BDL	8.000000	BDL	25.000000	BDL	25.000000	BDL	25.000000
2,4-DINITROTOLUENE	mg/kg	BDL	8.000000	BDL	25.000000	BDL	25.000000	BDL	25.000000
2,6-DINITROTCLUENE	mg/kg	BDL	8.000000	BDL	25.000000	BDL	25.000000	BDL	25.000000
ANTIMONY	mg/kg	BDL	. 500000	BDL	.499000	BDL	. 499000	BDL	. 500000
ARSENIC	mg/kg		3.100000		5.390000		4.690000		4.900000
BERYLLIUM	mg/kg		1.000000		1.500000		1.400000		1.200000
CADMIUM	mg/kg		.760000		.329000		.788000		4.700000
CHROMIUM	mg/kg		15.800000		24.500000		15.400000		32.000000
COPPER	mg/kg		10.500000		12.100000		14.100000		25.000000
LEAD	mg/kg		96.300000		34.800000		109.000000		136.000000
MERCURY	mg/kg	BDL	. 100000	BDL	.100000	BOL	.100000		.652000
NICKEL	mg/kg		8.300000		13.700000		9.580000		41.800000
SELENIUM	mg/kg	BDL	. 500000	BDL	.499000	BDL	. 499000	BDL	. 500000
SILICON	mg/kg		31.000000		43.300000		23.900000		34.900000
SILVER	mg/kg	BDL	.100000	BDL	.100000	BDL	.100000		.100000
THALLIUM	mg/kg	BDL	. 100000	BOL	.100000	BDL	. 100000	BDL	,100000
ZINC	mg/kg		53.600000		35.100000		64.300000		128.000000
PCB 1016	mg/kg	BDL	.003000	BDL	.003000	BOL	.003000	BOL	.003000
PCB 1221	mg/kg	BDL	.003000	BDL	.003000	BDL	.003000	BDL	.003000
PCB 1232	mg/kg	BDL	.003000	BOL	.003000	BDL	.003000	BDL	.003000
PCB 1242	mg/kg	BDL	.003000	BOL	.003000	BDL	.003000	BDL	.003000
PCB 1248	mg/kg	BDL	.003000	BDL	.003000	BDL	.003000	BDL	.003000
PCB 1254	mg/kg	BDL	.003000	BDL	.003000	BDL	.003000	BDL	.003000
PCB 1260	mg/kg		.210000	BOL	.003000		.100000		. 320000
ALDRIN	mg/kg	BOL	.000300	BDL	.000300	BDL	.000300	BDL	.000300
CHLORDANE	mg/kg	BDL	.003000	BDL	.003000	BOL	.003600	BDI.	.003000
DIELDRIN	mg/kg	BDL	.000300	BOL	.000000	PDL	.000300	BDL	.000300
ENDOSULFAN I	mg/kg	BDL	.000300	BDL	.000300	BDL	.000300	BDL	.000300
ENDOSULFAN II	mg/kg	BDL	. 000300	BDL	.000300	BDL	.000300	BDL	.000300
ENDOSULFAN SULFATE	mg/kg	BDL	.000300	BDL	.000300	BDL	.000300	BDL	.000300
ENDRIN	mg/kg	BOL	.000300	BDL	.000300	BDL	.000300	BDL	.000300
ENDRIN ALDEHYDE	mg/kg	BDL	.000300	BDL	.000300	BOL	.000300	BDL	. 000300
HEPTACHLOR	mg/kg	BDL	.000300	PDL	.000300	BDI.	.000300	BDL	.000300
HEPTACHLOR EPOXIDE	mg/kg	BDL	.000300	BDL	.000300	BDL	.000300	BDL	.000300
METHOXYCHLOR	mg/kg	BDL	.000300	BOL	.000300	BUL	.000300	BDL	.000300
PPDDD	mg/kg	BDL	.000300	BDL	.000300	BDL	. 000300		.051000
PPDDE	mg/kg	BDL	.000300	BDL	.000300		.000700		.020000
PPDDT	mg/kg	BOL	.000300	BOL	.000300	BDL	.000300		.150000
TOXAPHENE	mg/kg	BDL	.003000	BOL	.003000	PDT	.003000	PDL	.003000
a-BHC	mg/kg	BDL	.000300	BDL	.000300	BDL	.000300		.000500
b-BHC	mg/kg	BOL	.000300	BDL	.000300	BOL	.000300	BOL	.000300
d-DHC	ይደነ ዓጠ		.009300	BOL	.000300	BDL	.000300	BDL	.000300
g-BHC	mg/kg	BDL	.000300	BOL	.000300	BCL	. 000300	BOL	.000300
1,1,1-TRICHLOROETHAME	mg/kg	BDL	5.000000	BOL	5.000000	BDL	. 025000	BDL	.025000

Below Detection Limit Not Analyzed Diluted Out

PARAMETER	UNIT		FTAB23		FTAB24		FTAB2DD1		FTAB2DD2
1,1,2,2-TETRACHLOROETHANE	ru, ∕kg	BDL	5.000000	BDI		BDI.		BDI	
1,1,2-TRICHLOROETHANE	mg, kg	BDL	5.000000	BDI		BDL	. 025000	col	
1,1-D1CBLOROSTHANE	mg/kg	301.	5.000000	BDL		BDL	"2100C	BDL	
1,1-DICHLOROETHENE	ong/kg	EDL	5.000000	BDL		adr		BDL	
1,2-DICHLOROETHANE	mg/kg	BDL	5 003000	EDL		BDL	.025000	BD1.	
1,2-DICHLOROPROPANE	ung/kg	BDL	5.000006	302		BDL	.025000	adi	
2-BUTANONE	mg/kg		100.00000		190.000000	BDI.	. 500000	BDL	
2-CHLOROETHYLVINYLETHER	mg/kg	BDL	10.000000	BDL		BOL	.050000	BDL	
2-HEXANONE	mg/kg	SDL	50.000000	EDI		BOL	.250000	BDL	
4-METHYL-2-PENTANONE	mg/kg	BDL	50.00000	BOL		事して	.250000	BDL	
ACETONE	mg/kg	_	100,000000		100,600000	EDL	. 500000	BDL	500000
ACROLEIN	mg/kg	BDL	100.000000	BDL	100.000000	5DL	. 500000	BDL	. 500000
ACRYLONITRILE	mg/kg	BDL	100.000000	BDL	100.000000	BOL	.500000	BDL	. 500000
BENZENE	mg/kg	BCL	5.000000	BDL	5.000000	BDL	.025900	BOL	. 025000
BROMODICHLOROMETHANE	mg/kg	BDL	5.000000	EDL	5,000000	BOL	.025000	BDL	.025000
BROMOFORM	mg/kg	BDL	5.000000	BDL	5.000000	BDL	.025000	BDL	. 025000
BROMOMETHANE	mg/kg	BDL	10.000000	BDL	10.000000	801.	.050000	5DL	.050000
CARBON TETRACHLORIDE	mg/kg	PDL	5.000000	BOL	5.000000	90F	.025000	BDL	.025000
CARBONDISULFILE	mg/kg	BDL	5,000000	BCL	5.000000	BOL	.025006	BOL	.025000
CHLOROPENZENE	mg/kg	BDL.	5.000000	BD!	5.000000	BUL	.025000	BDL	.025000
CHLOROETHANE	mg/kg	BDL	10.000600	DLد	10.000000	BDL	.050000	BDL	. 050000
CHLORGFORM	mg/kg	BDL	5.000000	BOL	5.000000	BDL	.025000	BDL	.025000
CHLOROMETHANE	mg/kg	EDL	10.000000	BDL	10.000000	BOL	.050000	BDL	.050000
CIS-1,2-DICHLOROETHENE	mg/kg	BDL	5 000000	BDL	5.000000	BCL	.025000	BDL	.925000
CIS-1,3-DICHLOROPROPENE	m _G /kg	BDL	5.000000	BDL	5.000000	BDI.	.025000	BLL	.025000
DIBROMOCHLOROMETHANE	mg/kg	EDL	5.000000	BOL	5.0000Gü	BOL	.025000	BDL	.025000
ETHYLBENZENE	ರಾಹ/x3	BOL	5.000000		20.000000	BCL	.025000	BDL	.025000
METHYLENE CHLORIDE	mg/kg	BDT	5.000000	BOL	5.000000	BDI	. 025000		.420000
STYRENE	mg/kg	BOL	5.000000	BDL	5.000600	BDL	.025000	3DL	.025000
T-XILENE	mg/kg		33.000000		30.00000	BDL	.025000	BDL	.02500
TETRACHLOROETHENE	ing/kg	BDL	5.000000		6.000000	BOL	.025000	BDL	. 025000
TOLUENE	mg/kg	BDL	5.000000		27.000000	BDL	.025000	BDL	.025000
TRANS-1,2-DICHLOROETHENE	mg/kg	BDI.	5.000000	BDL	5.000000	BOL	.025000	BDL	. 025000
TRANS-1,3-DICHLOROPROPENE	mg/kg	BUL	5,000600	BDL	5.000000	BDL	.025000	BDL	.025000
TRICHLOROETHENE	mg/kg	RDL	5.000000	BOL	5.000000	BOL	.025000	BDL	.025000
VINYL ACETATE	mg/kg	BOL	50.000000	BUL	50.000000	BDL	. 250000	BUL	.250000
VINYL CHLORIDE	mg/kg	BDL	10.000000	BCL	10.000000	BDL	. 0.50000	BDL	.050000
2,4,6-TRIBROMOPHENOL-S	Z	#7	.000000	#7	.000000	∌ 7	.000000	#7	.000000
2-FLUOROBIPHENYL-S	2	#7	.000000	#7	.000000	∌ 7	. 600000	#7	.000000
2-FLUOROPHENOL-S	1		53.300000	#7	.000000	# 7	. 000000	∌ 7	.000000
NITROPENZENE-D5-S	7		43.000000	#7	.000000	#7	.000000	#7	.000000
P-TERPHENYL-D14-S	ž	#7	. 000000	∌ 7	. 000000	∌ 7	.000000	#7	.000000
PHENOL-D5-S	z -		59.700000	#7	. 000000	# 7	,000000	# 7	.000000
1,2-DICHLOROETHANE-D4 S	I .		122.000000		115.000000		96.500000		93.900000
4-BROMOFLUOROBENZENE-S	z		121.000000		128.000003		95.400000		107.000000
TOLUENE-D8-S	1		84.000000		99.400000		106.000000		87,800000

Balow Detection Limit Not Analyzed Diluted Out

BDL NA #7

PARAMETER	2817	FTAB31		STAB32	FTABJG	FTAB34	
				501. 25.00V000	BDL 25 000000	BDL 25.000000	
- 1 - 1 - V - TRI ORLUNG SEN SENS - 1 - 1 - O I TRIUNGS EN SEKE	ng kg	501 571	25 000000 26 000000	#31 25 090000	EDL 25.000000	BDL 25.000000	
1 2 1178ESWYLEFCKA21VE	26 45	301	25 32332	801 25,000000 801 25,000000	EDL 25.000000	BDL 25.000000	
. * DIDALUSENTENT	सन् इत् सन्दर्भ	901	26 222223	BrL 25,000000	30L 25 000000	BDL 25,000000	
1 • DIGHLOROSERJENE	ter no tag kaj	301	25 000000	BCL 25 000000	BIL 25,300103	BDL 25.000000	
2 * 5 TRICKLUNCHENGI	Jug 8.5	351	25 000000	501 25.000000	BDL 25,000000	BDL 25.000000	
2 * b *TS 10H10K02H3N0L	നും മട സുംബുദ്ദ്	801	25.000000	BDL 25.000100	BDL 25 000000	BDL 25.000000	
2 4 00151 PROPERNOU	T-6 L-6	301	25 (2222)	FD1 25 000000	EUL 25.000000	BDL 25.000000	
2 + - COMETRYLPSENOL	TLS FS	801	25 000000	BEL 23.000000	BDL 25.000000	BDL 25.000000	
2 4 CONTROPMENCE	றுத் A.த	822	125 000000	BDL 125.000000	BCL 125,000000	BDL 125.000000	
2 TRIOROMAPHITAM ENS	56 kg	801	25 000000	BDL 25.000900	50L 25,000000	BDL 25.000000	
2 - ONLOHOPREMEL	T6 +5	901.	25 000000	BD1. 25.000000	BDL 25,600000	BDL 25.000000	
2 ASTRYL + 5 CINCTACPHENCE	48 84	801	125,000000	BCL 125,000000	BDL 125 000000	BDL 125.000000	
1 HETHYLS ASHTHALENE	SUE A.S.	301	25,000000	BUL 25.000000	BOL 25.000000	39.000000	
L MANTERS DE SERVIC	"V5 K.4" .	301	25 /000000	EDL 25.000000	BDL 25,000000	BDL 25.000000	
1 - NITRUANILINE	24 40	30 <u>1</u> .	125 000000	PDL 125,000000	BOL 125.000000	BDL 125.000000	
Z NITKZEMERUD	T4 84	801	25 :32233	BOL 25.000000	BDL 25.830000	BDL 25.000000	
J 21780383848712188	T# 44	300	51 010000	B01 50.000000	BDL 50.000000	BDL 50.000000	
N. N. TAGANININE	*A 44	3 00	125 117670	BDL 125 000000	BDL 125,000000	BDL 125,000000	
- 3A-188, 292871 - 87.498	33 44	221.	25 00000a	EDL 25.000000	BDL 25.000000	BDL 25,000000	
 INTERCONS METRY DESERTE 	74 KG	501.	10 000000	BOL 50,000000	EDL 50.000000	BDI. 50.000000	
• CRUCAL AND LINE	ing ag	301	\$0,60006 0	BDL 51 000000	BDL 50.000000	BDI. 50 000000	
- DECEMBER NYC PRENYL STREET	74 45	301	25,000000	BDL 25.000000	BLL 25.000000	BDL 25.000000	
 ₩£19323503473 	ma kg	30%	25.000000	50L 25.000009	BDL 25.000000	BDL 25.000000	
* MITFUANILINE	ng kg	301	125 000000	BDL 123.000000	BDL 125.000000	BDL 125.000000	
* MITRUARENCE	78 78	BOL	145 000 100	BOL 125,000000	BDL 125.000000	BDL 125,000000	
ALENAEHTHERF	T.A. R.S.	301	25 0JbJ03	POL 25.000000	BDL 25.000000	BDL 25.000000	
ACENAPHTHILENE	TUS AS	an:	25,000000	EDL 25,000000	BDL 25.000000	BDL 25.000000	
AMILINE	கை சத்	301	1) 000000	BDL 50.000000	RDL 50.000000	BDL 50,000000	
AND GRAJENE	74 KG	SCL	25 000000	BGL 25,000000	BDL 25.000000	PDL 25.000000	
4581001AE	ካፋ ፋሪ	801	:35 000000	BOL 125 000000	BDL 125,000000	BDL 125,000000	
FINITG AVANTYFOR TENE	the Re	BOL	25 000000	BCL 25,000000	BOL 25,000000	MDL 25.000003	
BENDI & FIRENE	TR ES	901	25 000000	BDL 25.000000	BDL 25,000000	6.000000	
BENCH SUFFLUCRANTHENE	T4 24	BOL	25 000000	BDL 25,000000	BDL 25.900000	10.000000	
BENCH () N COPERVLENE	TA ES	30L	25 000000	BDL 25.000000	BDL 25.000000	BDL 25.000000	
BENDO A FLUGRANTHENE	SA KE	801.	25 000000	BDL 25.000000	BDL 25.000000	BDL 25.000000	
SENTOIT ACIT	ng kg	305	125 000000	IDL 125.000000	BDL 125,000000	BDL 125,000000	
BENITYL ALCOHOL	TA RE	BC L	50 000000	BDL 50 000000	BDL 50,000000	BDL 50,000000	
818 2 CHLOSCETHOXY METHANE	TA ER	YOL	25 000000	ECL 25.000000	BDL 25.00000	BDL 25.000000	
NIG 12 CHLORGETHY: ETMER	DA EF	BCL	25 000000	BDI 25 900000	RDL 25.000000	BDL 25.000000	
913-1 Odloroisofropyllether	ng eg	301.	21 000000	BUL 25 090000	BDL 25.000000	BDL 25,000000	
31ALATER JYX3HJYHT3 STEALATE	ng it g	adt	25 000000	BDL 25.000000	BDI. 25.000000	BDL 25.000000	
BUTYLBENZYLPHTHALATE	THE FE	BOL	25 000000	BDL 25.000000	BCL 25.000000	BDL 25.000000	
TORYDENE	TA FR	301	25 000000	BGL 25.005000	BDL 25.000000	11.000000	
DISHCOTYLEHTHALATE	TA ER	90L	25 983300	BDL 25.000000	BDL 25 000000	BCL 25.000000	
DIBENSOIA NUMBERSONE	ng kg	POL	25 000000	apt 25.00000G	BDL 25.000000	BOL 25.000000	
DIBENDOFTHAN	ng Ig	30L	25 000000	BDL 25 010010	306 25 000000	BOL 25.000000	
DIBUTYLPHTHALATE	TA IA	PDL PDL	25 000000	MDL 25.000000	BDL 25 000000	BDL 25.000000	
CIETHYL PHTHALATE	TUS IN S	ADL	25 000000	BDL 25.000000	80L 25.000000	BDL 25,000000	
STAINFTHS LYHTHMIC	THE RE	138	25 900000	BDL 25 000000	BDL 25.000000	BDI. 25 000000	
PUNCHANTHENE	ne ca	BOL	25 010000	BOL 25 000000	EDL 25,000000	BP1. 25.000000	
FLUGENT	74 74	3DL	25 000000	BDL 25 000000	BDL 25,000000	17 000000	

³⁰² 4A #1 Mot Analyzed Oxfoted Out

PARAMETER	UNIT		FTAB31	F	TAB32	Ē	TAB33	F	TAB34
HEXACHLORGBENZENE	mg/kg	BDL.	25,000000	BOI.	25.000000	EDL	25.000000	BDL	25.000000
HEXACHLOROBUTADIENE	mg/kg	BOL	25,600000	BDL		BOL	25.000000	BDL	25.000000
HEXACHLOROCYCLOFENI ADIENE	mg.'kg	BOL	25.000000	BDL.		BDL		BDL	
HEXACHLORGETHANS	mg/kg	BDL	25.000000	BDL	25,000000	BOL	25.000000	BDL	25.000000
INDENO(1,2,3-c,a)PYRENE	mg/kg	BDL	25.000000	BOL	25.000000	BOL	25.000000	BDL	25.000000
ISOPHORONE	mg/kg	PDL	25,000000	BUL	25.000000	BDL	25.000000	BDL	25.000000
N-NITROSO-DI-METHYLAMINE	mg/kg	BOL	25.000000	BOL.	25.000000	BDL	25.000000	BDL	25.000000
N-NITROSC-DI-N-PROPYLAMINE	ng/kg	BDL	25.000000	3DL	25.000000	BDL	25.000000	BDL	25.000600
N-NITROSG-DI-PHENYLAMINE	mg/kg	BDL	25.000000	SDL	25.000000	BDL	25.000000	BDL	25.000000
Naphthalene	mg/kg	BDL	25.000000	BUL	25.000000	BDL	25.000000	BDL	25.000000
NITROBENZENE	mg/kg	BDL	25.000000	BDL	25.000000	BDL	25.000000	BDL	25.000000
PENTACHLOROPHENOL	mg/kg	BDI.	125,000000	BDL	125,000000	BOL	125.000000	BOL	125.000000
PHENANTHRENE	mg/kg	BDL	25,000000	BDL	25 000000	BDL	25.000000		63.000000
PHENOL	mg/kg	BOL	25,000000	BDL	25.000000	BOL	25.000000	3DL	25.000000
PYRENE	mg/kg	BDL	25,000000	SOL	25.000000	BDL	25.000000		6.200000
2,4-DINITROTCLUENE	mg/kg	BDL	25,000000	BDL	25,000060	BUL	25.000000	BDL	25.000000
2,6-DINITROTCLUENE	mg/kg	BDL	25,000000	BOL	25 600000	BDL.	25.000000	BDL	25,600000
ANTIMONY	ng/kg	POL	.499000	BDL	. 500000	BDL	. 500000	BDL	. 49900მ
ARSENTC	mg/kg		2,390000		1,900600		3.400000		1.900000
BERYLLIUM	ong/kg		.798000		.700003		1.000000		. 899000
CALMIUM	mg/kg		2.000000		. \$40000		.400060		4.490000
CHROMIUM	mg/kg		28,700000		15,200000		16.400000		33.100000
COPPER	mg/kg		36,400000		11.000000		9.200000		74.400000
LEAD	mg/kg		277,000000		254,000000		51.100000		503.000000
MERCURY	mg/kg	BDL	. 100000	POL	.100000	BOL	.100000	BDL	.100600
NICKEL	ng, ka		19,00000		8,900000		9.200000		18.200000
SELENIUM	mg/kg	BDL	, 499000	BOL	. 580000	BDL.	. 500000	BDL	.499000
SILICON	ng/kg		28.100000		26.50000G		26.300000		22.100000
SILVER	my/kg		.100000		, 600000		. 900000		4.190000
THALLTUM	mg/kg	BDL	.100006	30L	.100000	BOL	. 100000	BDL	. 100000
ZINC	mg/kg		409,300000		32,700000		54 100000		648.000000
PCB 1016	mg/kg	LDL	003000	BOL	.033000	BOL	.003000	BDL	.003000
PCB 1221	mg/kg	BOL	.003006	BOL	.003000	BOL	.003000	JOE	.003000
PCB 1232	ng/kg	BOL	.003000	SOL	.603606	PDL	. 003000	DDL	.003000
PCB 1242	og/kg	BDL	.003000	3CL	,003600	BOL	.003000	BDL	.000600
PCD 1248	ng/kg	FOL	.003000	BOL	.003000	DDL	,003000	BDL	.003000
PCB 1254	mg/kg	BOL	.003300	BOL	.003000	BDL.	.003960	BDL	.003600
PC9 1230	rag / kg		4,300000		, 940000		.570000	BDL	.063000
ALDRIN	mg/kg	BDL	.000300	SOL	. 300300		,000900	ADL	.000300
CHI ORDANE	mg/kg	BDL	.003000	BOL	. 003600	BDI.	.003000	BDI.	. 003000
DIELDRIM	mg/kg	BDL	. 000300	BOL	.000300	Bül	000300	BDL	.000300
ENDOSULFAN I	rg/kg	BOL	.006300	edl	,000300	SUL	.000300	BDL.	.000300
ENDGSULFAN 'I	mg/kg	BOL	.000300		034000	BDL	.000300	BDL	. 000300
ENDOSULFAN SULFATE	mg/kg	BDL	.000360	EDL	.006300	BOL	,000300	BCL	000300
EMOPIN	ma/kg	ROL	.000000	BDL	. 056300	BOL	000300	BOL	.000300
ENDRIM ALDEHYDE	mg/kg	BOL	000300	335	.000300	BOL	.000300	BDL	.000300
HEPTACHLOR	mg/kg	BUL	000300	BOL	.000300	BOL	.000360	BDL	.000300
HEPTACHLOR EPOXIDE	mg/kg	30L	000300	FOL	.000330	BCL	, 000300	BCL	.000309
METMOXYCHLCA	mg/kg	BDL	.000300	EUL.	,000364	BO!	.370300	3DL	.000300
C0099	mg/kg	BC:*	, 580000		.250000		220000	EDL	.000300
PPDDE	mar ikg	BOL	000000	***	.023000	97.	.070000	BOL	.000300
PPDUT	me / k a	BDL BD:	.004300	308	.005303	BUL	006300	0.54	.030000
TOXAFHENE	mg, kg	30L	.003000	301	993000	BOL	.001000	BDL	.003000
a - RHC	mg/kg	30L	.000300	30L	.000300	BCL,	.000300	BOL	. 900300
p-BHC	aug / k g	ADL	.000303	Hil	. 000100	BDL.	. 000300	30L	. 000300

Selow De's tion Limit Mot Analyzed Diluted Out BOL MA #7

PARAMETER	UNIT		FTAB31	F	TAB32	F	rab33	F7	AB34
		222			000300		000000		
d-38C	mg/kg	BDL	.000300	ADT	.000300	BDL	.000300	BDL	.000300
g-BHC	mg/kg	FDL	.009300 .050000	901	.005100	901	.004800	BDL	.000300 .625000
1,1,1-TRICHLOROETHANE	mg/kg	BDL		BDL	.025000	BDL	6.250000	BDL	
1,1,2,2-TETRACHLOROETHANE	ong/kg	BDL	.050000	BDL	025000	BDL BDL	6.250000 6.250000	BDL	.625000 .625000
1,1,2-TRICHLOROETHANE	mg/kg	BDL	.050000	BDL	.025000	BDL	6.250000	BDL	.625000
1,1-DICHLOROETHANE	mg/kg	BDL	.050000	BDL	.025000	BDL	6,250000	BDL	.625000
1,1-DICHLOROETHENE	mg/kg	BDL	.050000	BDL	.025000				
1,2-DICHLOROETHANE	:3/kg	PDL	.050000	EDL	.025000	BDL	6.250000	BDL	.625000
1,2-DICHLOROPROPANE	me kg	BOL	. 050000	BDL	.025000	BDL	5.250000	BDL	.625000
2-BUTANONE	ம்த/இத	BOL	1.000000	BDL	. 500000		125.000003	BDL	12.500000
2-CHLOROETHYLVINYLETHER	mg/kg	EDL	. 100000	BDL	.050000	PDL	12.500000	BDL	1.250000
2-HEXANONE	mg/ig	EDL	. 500000	BDL	.250000	BDL	62.500000	BDL	6.250000
4-METHYL-2-PENTANONE	mg/kg	BDL	. 500000	BDL	. 250000	PDL	62.500000	BDL	6.250000
ACETONE	mg/kg	BDL	1.000000	BDL	.500000		125.000000	BDL	12.500000
ACROLEIN	mg/kg	EDL	1.000000	BDL	.500000		125,000000	BDL	12.500000
ACRYLONITRILE	mg/kg	BDL	1,000000	BDL	. 500000		125.000000	BDL	12.500000
HENZENE	mg/kg	BDL	.050000	BDL	.025000	BDL	6.250000		1.700000
BROMODICHLOROMETHANE	mg/kg	BOL	.050000	BDL	.025000	BDL	6.250000	BCL	. 525000
BROMOFORM	mg/kg	BDL	.050000	PDL	.025000	BDL	6.250000	BDL	.625000
BROMOMETHANE	mg/kg	BDL	. 100000	BDL	. 050000	BDL	12.500000	BDL	1.250000
CAPBON TETRACHLORIDE	mg/kg	BDL	. 050000	3DL	.025000	BDL	6 250000	BDL	.625000
CARBONDISULFIDE	mg/kg	BDL	. 050000	BDI.	,025000	BDL	6.250000	BDL	.625000
CHLOROBENZENE	mg/kg	BDL	.050006	BDL	,025000	BDL	6.250000	BDI.	. 625000
CHLOROETHANE	mg/kg	BDL	. 100000	BDL	. 050000	BDL	12.500000	BDL	12.500000
CHLOROFORM	mg/kg	BCL	. 050060	BDL	.025000	BDL	6.250000	BOL	. 625000
CHLOROMETHANE	mg/kg	BDL	. 100000	BOL	.050000	BDL	12,500000	BOL	1.250000
CIS-1,2-DICHLORGETHENE	mg/kg	BDL	.050000	BOL	.025000	BDL	6.250000	BDL	.625000
CIS-1,3-DICHLOROPROPENT	ong /kg	BDL	. 050000	BDL	.025000	BDL	€.250600	BUL	. 625000
DIBROMOCIILOROMETHANE	mg/kg	BDL	.050000	EDL	.025000	BDL	6.250000	EDL	. 625006
ETHYLBENZENE	mg/kg	BDL	. 050000	BOL	.025000		7.000000		4.800000
METHYLENE CHLORIDE	mg/kg		.350000		.110000	BDL	6 253000		5.200000
STYRENE	mg/kg	BDL	.050000	BDL	.025000	BDL	6.250000	BDL	.625000
T-XYLZRE	mg/kg	DOL	.050000	BDL	.025000		51.000000		4.800000
TETRACHLOROETHENE	mg/kg		.280000	BOL	.025000	BDL	6.250000		3.000000
TOLUENE	mg/kg	SDL	. 050000	BDL	.025000		18.000000		5.700000
TRANS-1, 2-DICHLOROETHENE	mg/kg	BUL	. 050000	BDL	. 025000	BDL	6.250000	BDL	. 625000
Trans-1,3-dichlorofropene	mg/kg	BDL	. 050000	BLL	. 025000	BOL	6.250000	BOL	.625000
TRICHLOROLIHENE	mg/kg	BDL	050000	BDL	.025000	BDL	6.250000		3 500000
VINYL ACETATE	mg/kg	BDL	. 0 50000	BOL	. 250000	BUL	62.500000	BOL	6.259000
VINYL CHLORIDE	mg/kg	BDL	.100000	BDL	.050000	BDL	12.500000	BDL	1.250000
2,4,6°TRIBROMOPHENOL-S	1	# 7	.000000	#7	, 200000	# 7	.000000	#7	.000000
2-FLUOROBIFHENYL-S	I	# 7	. 200000	# 7	.000000	# 7	.000000	₽ 7	.000000
2-FLUOROPHENGL-S	1	∌ 7	.000000	#7	.000000	#7	.000000	₽ 7	.000000
NITROBENZENE-05-S	ı	∌ 7	. 000000	\$ 7	.000000	# 7	.000000	#7	.000000
P-TERPHENYL-D14-S	Z	∳ 7	. 000000	# 7	.000000	∌ 7	.000000	₽ 7	.000000
PHENOL+D5-3	1	#7	.000000	#7	.000000	#7	.000000	#7	,000000
1,2-DICHLOROLTHANE D4-S	I		111,050000		108,000000		90.100000		121.000000
4-BROMOFLUOROBENZENE-S	1		31,600600		107,000000		104.000000		103.000000
TOLUENE-DE-S	I		76.000990		80.000000		120.000000		138.000000

Selow Detection Limit Nos Analyzed Diluted Out BUL

N4 #7

PARAMETER	UNIT	FTAB3DD	FTAB3SP1	FTAB3SP2	FTAB30F

1,2,4-TRICHLCROBENZENE	mg/kg	BDL 50.000000	3DL 25.008603	BDL 55.000000	3DL .600000
1,2-DTCHLOROBENZERE	mg/kg	BDL 50.000000	BDL 25.000000	EDL 55.000000	3DL .500000
1,2-DIPHENYLHYDRAZINE	றுத ∕க்கு	BDL 50.000000	BDL 25.000C00	BDL 55.000000	BDL .600000
1,3-DICHLOPOBENZENE	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	BUL ,600000
1,4-DICHLOROBENZENE	mg/kg	BDL 50.000000	BDL 25.000000	EDL 55.000000	BDL .80000C
2.4,5-TRICHLOROPHENOL	mg/kg	BDL 50.000000	BOL 25.000000	BDL 55.000000	BOL . 500000
2,4,6-TRICRLOROPHENOL	mg/kg	BDL 50,000000	50L 25.000000	BDL 55.000000	BDL .600000
2,4-DICHLORCPHENOL	ng/kg	BDL 50.000000	3DL 25.000000	BDL 55.000000	BDL .600000
2,4-DIMETHYLPHENOL	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	BDL .600000
2,4-DINITROFHENOL	mg/kg	BDL 250.000000	BDL 125,000000	BDL 275.000000	BDL 3.000000
2-CELORONAPHTHALENE	mg/kg	BDL 50.000000	BDL 25.000000	BDL 35.000000	BDL .600000
2-CHLORCPBENOL	mg/kg	BDL 50.000000	EDL 25.000000	BDL 55.030000	BDL .600000
2-METHYL-4,8-DINOTROPHENOL	ng/kg	BDL 250,000000	BOL 125.000000	BDL 275.000000	BDL 3,000000
2-METHYLNAPHTHALENE	mg/kg	BDL 50.00000	BDL 25.00G000	BDL 55.000000	.080000
2-METHYLPHENCL	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	BDL .600000
2-NITROANILINE	mg/kg	BDL 250,000000	EDL 125.000000	BDL 275.000000	BDL 3.000000
2-NITROPHENOL	mg/kg	BDL 50.00300C	BDL 25,000000	PDL 55.000000	BDL .600000
3,3-DICHLOROBENZIDINE	ong/kg	BDL 100,000000	BDL 50.000000	BDL 110.000000	BDL 1,200000
3-NITRGANILINE	mg/kg	BDL 250.000000	BDL 125.000000	ADL 275.000000	BDL 3.000000
4-BROMOPHENYL ETHER	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	BDL .600000
4-CHLORO-3-METHYLPHENOL	ms/ks	BDL 100.000000	BUL 50.000000	BDL 110.000000	BDI. 1.200000
4-CHLORGANILINE	ing/kg	BDL 100,000000	BDL 50.000000	BDL 110.000000	BDL 1.200000
4-CHLOROPHENYL PHENYL ETHER	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	DDL 600000
4-METHYLPHENOL	mg/kg	BDL 50.000000	BDL 25.000000	BUL 55.000000	PDL .600000
4-NITROANILINE	mg/kg	BOL 250,000000	BOL 125.000000	BDL 275.000000	BDL 3.000600
4-NITROPHENOL	mg/kg	BDL 250.000000	BOL 125,000000	BDL 275,000000	BDL 3.000000
ACENAPHTHENE	mg/kg	BDL 50.000000	EDL 25.000000	BDL 55.000000	BDL .600000
ACENAPHTHYLENE	mg/kg	BDL 50,000000	BDL 25.000000	BDL 55.000000	BDL .600000
ANILINE	mg/kg	BDL 100.000000	BOL 50.000000	BDL 110.000000	BDI. 1.200000
ANTHRACENE	mg/kg	BDL 50.000000	BOL 25.000000	BDL 55.000000	5DL .600000
BENZIDINE	mg/kg	BDL 250,000000	BOL 125.000000	BDL 275.000000	BDL 3,000000
BENZO(*)ANTHRACENE	mg/kg	BDL 50.000000	30L Z5.000000	BDL 55.000000	BDL .530000
BENZO(a)PYRENE	mg/kg	BDL 50.00000	BDL 25.000000	BD5 55.000C00	.090000
Benzo (b) flucranthene	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	5DL .600001
BENZO(g,h,1)PERYLENE	mg/kg	BDL 50,000000	BOL 25.000000	BCL 55.000000	BDL .600000
BENZO(k)FLUORANTHENE	mg/kg	BDL 50.000000	3DL 25.000000	BDL 55.000000	BDL .600000
BENZOIC ACID	mg/kg	BOL 250.900000	POL 125.000000	BDL 275.000000	BDL 3.000000
BENZYL ALCOHOL	mg/kg	BD!. 100,000000	BOL 50.000000	3DL 110.000000	BDL 1.200000
BIS(2-CHLOROETHOXY)METHANE	ng/kg	BDL 50.000000	BDL 25.000000	BDE: 53.000000	BDL .60000
BIS(2-CHLOROETHYL)ETHER	mg/kg	BDL 50.000000	EDL 25.0000G0	BDE: 55.000000	.600000
DIS(2-CHLOROISUPROPYL)ETHER	mg/kg	BDL 50.000000	BOL 25.000000	BDL: 55.000000	3DL .500000
BIS(2-ETHYLHEXYL)PHTHALATE	mg/kg	BDL 50,000000	20L 25.00000	BDL 55.000000	BDL .670000
BUTYLBENZYLPHTHALATE	mg/kg	BDL 50,000000	BOL 23.000000	BDL 55.000000	EDL . 600000
CHRYSENE	mg/kg	BDL 50.000000	BDL 25.300000	BDL 55.000000	BDL .600000
DI-N-OCTYUPHTRALATE	mg/kg	BOL 50.000000	ADL 25.000700	BDL 55.G00000	BDL .600000
DIBANZO(. h) ANTHRACENE	mg/kg	BDL 50,000000	POL 25.000000	BDL 55.000000	BDL .500000
dibenzofuran	mg/kg	5DL 50,000000	BDL 25.000000	BOL 55,000000	BDL .600000
DIBUTYLPHTHALATE	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55,000000	BDL .600000
DIFTHYL PHTHALATE	mg/kg	BDL 50,000000	BOL 25.000000	BDL 55,000000	000000 . 600000
DIMETHYL PHTHALATE	mg/kg	BDL 50.000000	BDL 25.0000ng	80L 55,000000	8UL .600000
FLUCKANTHENE	mg/kg	BDL 50,000000	30L 23.000000	BDL 55.000000	000000 IDB
FLUORENE	mg/kg	BUL 50.000000	BOL 25.000000	BOL 55,000000	BDL .600000
HEXACHLOROBENZENE	mė/kg	BDL 50.000000	BOL 25.000000	NOL 35,000000	8DL ,60000
HEXACHLOROBUTADIENE	mg/kg	BDL 50,000000	BDL 25.000000	BOL 55,000000	U00000 . GC0000
HEXACHLOROCYCLOPENTAB I ENE	mg/kg	PGL 50.000000	BOL 25.000000	BUL 55,000000	BDI600000

Felow Detection Limit Not Analyzed Diluted Out

THE PROPERTY OF THE PROPERTY O

BDL MA #7

PARAMETER	UNIT	FTAB3DD	FTAB3SP1	FTAB3SP2	FTAB30F
HEXACHLORGETHANE	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	BDL .600000
INDENO(1,2,3-c,d)PYREME	mg/kg	BDL 50.00000	BDL 25.000000	BDL 55,000000	BDL .600000
ISOPHORONE	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	BDI600000
M-NITROSO-DI-METHYLAMINE	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	BDL .600000
N-NTTROSO-DI-N-PROPYLAMINE	mg/kg	BDL 50.000000	BDL 25,000000	BDL 55.000000	BDL .600000
N-NITROSO-DI-PHENYLAMINE	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	BDL .600000
NAPETHALENE	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	BDL .600000
NITROBENZENE	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	BDL .600000
PENTACHLOROPHENOL	mg/kg	BDL 250,000000	BDL 125,000000	BDL 275.000000	BDL 3.00000
PHENANTHRENE	mg/kg	BDL 50.000000	BDL 25,000000	BDL 55.000000	BDL .600000
PHENOL	mg/kg	BDL 50.000000	BDL 25.000000	BDL 55.000000	BDL .600000
PYRENE	mg/kg	8,200000	BDL 25.000000	BDL 55.000000	BDL .600000
2,4-CINITROTOLUENE	mg/kg	BDL 50,000000	BDL 25.000000	BDL 55.000000	BDL .600000
2,6-DINITROTOLUENE	mg/kg	BDL 50.000000	BEL 25,000000	BDL 55.000000	BDL .600000
ANTIMONY	mg/kg	5DL .499000	BCL .499000	BDL .499000	BDL .499000
ARSENIC	mg/kg	2.200000	3.090000	2.400000	2.100000
BERYLLIUM	mg/kg	. 999000	1.300000	.898000	. 799000
CADMIUM	mg/kg	3.260000	1.270000	1.330000	3.310000
CBROMIUM	mg/kg	27.900000	31.100000	21.400000	6.290000
COPPER	mg/kg	30.900000	17.100000	17.900000	13.400000
I EAD	mg/kg	237.000000	192.000000	269.000000	18.000000
MEECURY	mg/kg	BDL . 100000	BDL .100000	BDL .100000	BDL .100000
NICKEL	ng/kg	12.500000	10.400000	9.480000	5.690000
SELENIUM	mg/kg	BDL .499000	BDL ,499000	BDL .499000	BDL .499000
SILICON	mg/kg	28.800000	27.600000	39.600000	19,400000
SILVER	mg/kg	4.500000	.100000	.100300	. 100000
THALLIUM	ng/kg	BDL .100000	BDL .100000	BDL .100000	BDL .100000
ZINC	mg/kg	140.000000	103.000000	123.000000	21.900000
PCB 1016	mg/kg	BDL .003000	BDL .003000	BDL .003000	BDL .003600
PCB 1221	mg/kg	BDL .003000	BDL .003000	BDL .003000	BDL .003000
PCB 1232	mg/kg	BDL .003000	BDL .003000	BDL .003000	BDL .003000
PCB 1242	mg/kg	BDL .003000	BDL .003000	BDL .003000	BDL .003000
PCB 1248	mg/kg	BDL .003000	BDL .003000	BDL .003000	BDL .003000
PCB 1254	mg/kg	BDL .003000	BDL .003000	BDL .003000	BDL .003000
PCB 1260	mg/kg	BDL .003000	BDL 003000	BDL .003000	BDL .003000
ALDRIN	mg/kg	BDL .000300	BDL .000300	BDL .000500	BDL .000300
CHLORDANE	mg,'kg	BDL .003000	BDL .003000	BDL .003000	BDL .003000
DIELDRIN EMDOSULFAN I	mg/kg	BDL .000300 BDL .000300	BDL .000300 BDL .000300	BDL .000300 BDL .000300	BDL .000300 BDL .000300
ENDOSULFAN II	mg/kg		BDL .000300	BDL .000300	BDL .000300 BDL .000300
ENDOSULFAN SULFATO	mg/kg mg/kg	BDL .000300 BDL .000300	BDL ,000300	BDL .000300	8DL .000300
ENDRIN	mg/kg	BDL .000300	BDL .000300	BDL .000300	3DL .000300
ENDRIN ALDEHYDE	mg/kg	BDL .000300	BDL .000300	BDL .000300	BDL .000300
HEPTACHLOR	mg/kg	BDL .000300	BDL .000300	BDL .000300	.005000
HEPTACHLOR EFOXIDE	n.g/kg	BDL .000300	BDL .00G300	BDL .000300	BD*000300
METHOXYCHLOR	mg/kg	BDL .000300	BDL ,000300	BDL .000300	BDL .000300
PPODO	mg/kg	1,400000	. 580000	. 540000	.601900
PPDDE	mg/kg	.095000	BDL .000300	.048000	BDL .000300
PPDDY	mg/kg	BDL ,000300	BOL .000300	301000300	BDL .000300
TOXAPHENE	mg/kg	BDL .063000	BDL .003000	BDL .003000	BDL .003000
a~BHC	mag/ke	BDL .000300	BDL .0003C0	BOL .000300	BDL 000300
ъ- внС	mg/kg	DDE .000300	.004700	BDL .000300	BDL .000300
1-BHC	mg/kg	BUL 000300	BDL .000300	BOL .000300	BDL .000300
g-ВИС	mg/kg	BDL .000300	.003400	BDL .000300	3DL .000300
1,1,1-TRICHLOROETHANE	mg/kg	BDL 2.500000	BUL .025000	BOL .025000	BOL .025000

Below Detection Limit Not Analyzed Diluted Gut BUI.

XA 47

PARAMETER	UNIT	UNIT			FTAB3SP1		TAB3SP2	FTAB30F	
1,1,2,2-TETRACHLOROETHANE	mg/kg	BDL	2.500000	30	L .025000	BDI,	.125000	BDL	. 025000
1,1,2-TRICHLOROETHARE	mg/kg	BDL	2.500000	FD.	L .025000	EDL	.025000	BDL	.025000
1,1-DICHLORGETHANE	mg/kg	BDL	2.500000	BD:	L .025000	BDL	.025000	BDL	.025000
1,1-DICHLOROETHENE	mg/kg	BDL	5.000000	BD:	.025000	HDI.	.025000	BDL	.025000
1,2-DICHLOROETHANE	mg/kg	BDL	2.500000	201	.025000	BDL	.025000	BDL	.025000
1,2-DICHLOROPROFANE	mg/kg	SDL	2.500060	BD	.025000	BDI.	. 025000	BDL	.025000
2-BUTANCNE	π.g/kg	BOL	50.000000	301	.500000	BDL	. 500000	BDL	. 500000
2-CHLOROETHYLVINYLETHER	.ag/kg	EDL	5.000000	BDE	.050000	BUL	.050000	BDL	.050000
2-HEXANONE	mg/kg	BDL	25.000000	BDI	.250000	BDL	.250000	PDL	.250000
4-methyl-2-pentanone	mg/kg	BDL	25.000000	EOI	.250000	BDL	.250000	BDL	.250000
ACETONE	mg/kg	BDL	50.000000		1.800000		1.200000		2.900000
ACROLEIN	mg/kg	BDL	50,000000	BOL	500000	BDL	.500000	BDL	.500000
ACRYLONITRILE	mg/kg	BDL	50.000000	301	500000	BDL	. 500000	BDL	. 500000
BENZENE	mg/kg	BDL	2.500000	BJE	. 025000	BDL	.025000	BDL	.025000
BROMODICHLOROMETHANE	mg/kg	BDL	2.500000	BOL	025000	BOL	. 325000	BDL	.025000
BROMOFORM	mg/kg	BDL	2.500000	BPL	. 025000	BDL	.025000	3DL	.025000
BROMOMETHANE	mg/kg	BDL	5.000000	BOL		BDL	.050000	BDL	.050000
CAREON TETRACHLORIDE	mg/kg	BOL	2.500000	SOL	.025600	BDL	.025000	BÚL	.025000
CARFONDISULFIDE	mg/kg	BDL	2.500000	BOL	. 025000	BDL	.025000	BDL	.025000
CHLOROBENZENE	mg/kg	BUL	2.500000	BOL	.025000	BOL	. 025000	PDL	.025000
CHLORGETHANE	mg/kg	BDL	5.000000	BCL	.050000	BDL	.050000	BDL	050000
CHLOROFORM	mg/kg	BDL	2.500000	BOL	.025000	BDL	.025000	BDL	.025000
CHLOROMETHANE	mg/kg	BDL	5.000000	30£	.050006	BDL	.050000	BDL	.050000
CIS-1, 2-DICHLOROETHENE	mg/kg	ROL	2.500000	BOL	.025000	BUL	. 025900	BDL	. 025000
CIS-1, 3-DICHLOROPROPENE	mg/kg	BDL	2.500000	BOL	.025000	PDL	.025000	BDL	.025000
DIBROMOCHLOROMETHANE	mg/kg	BDL	2.500000	30I.	.025000	BAL	.025000	BDL	. 025000
ETHYLBENZENE	mg/kg		3.200000	MOL	. 025000	BUL	.025000	BOL	.025000
METHYLENE CHLORIDE	mg/kg		14.000000		.039003		.060000	BDL	.925000
STYRENE	mg/kg	BDL	2.500000	Bol	025000	BDL	.025000	BDL	.025000
1 -XYT.EME	mg/kg		25,000000	ECL	.025000	BDL	.025000	EDL	. 025000
TETRACHLORDETHENE	mg/kg	BDL	2.500000	BOL	.025000	BCL	.025000	BDL	.025000
TOLUENE	mg/kg		17.000000	SDL	.025000	BUL	.025000	BDL	.025000
TRANS-1,2-DIGHLORGETHENE	ing/kg	EDL	2.500000	BOL	.025000	BDL	.025000	BCL	.025000
TRANS-1,3-DICHLOROPROPENE	mg/kg	BDL	2.500000	BOL	.025000	BOL	.025000	BDL	.025000
TRICHLORGETHENE	mg/kg	BUL	2.500000	BOL	. 925000	BOL	.025000	BDL	.025000
VINYL ACETATE	mg/kg	BDL	25.000000	BOL	. 250000	BDL	. 250000	BDL	. 250000
VINYL CHLORIDE	mg/kg	SOL	5.000000	SOL	.050000	BD1.	.050000	POL	. 050000
2,4,6-TRIBROMOPHENOL-S	2	# 7	.000000	#7	.000000	#2	,000000	7	2.300000
2-FLUOROBIPHENYL-S	X.	# 7	.000000	#7	.000000	#7	.000000	5	7.000000
2-FLUCROI HENOL-S	:	#7	.000000	#7	.000000	# 7	.000000	1	0.300000
NITROBENZENE-D5-S	1	₽ 7	.000000	€7	.000000	#7	.000000	2	6.700000
P-TERPHENYL-D14-S	z -	#7	.000000	♦ 7	.000000	∌ 7	.000000	5	6.400000
PHENOL-D5-S	1	∌ 7	.000000	₽ 7	.000000	#7	,000000	3.	0,00000
1,2 DICKLOROETHANE-D4-S	2		84.000000		109,000000	10	5.000000	12	8.000000
4-BROMOFLUCROSENZENE-S TCLUENE-D8-S	1		83.20000		83,100000	12	6.000000	11	7.000000
TOTOTOTO DO S	1	1	16.000000		82.400000	12	6.000000	8:	5 800000

Below Detection Limit Not Analyzed Diluted Out

BDL HA #7

PARAMETER	TINU	FTASH1		F	TASH2	F	TASH3	FTAFE1	
1,2,4-TRICHLOROBENZENE	mg/kg	PDL	.600000	BDL	. 600000	BOL	.600000	BUL	5.100000
1,2-DICELOROBENZENE	mg/kg	BDL	. 500000	BDL	. 600000	BDL	. 600000	BUL	5.100000
1.2-DIPHEM/LHYDRAZINE	mg/kg	BDL	.600000	BOL	.600000	BDL	.500000	BDL	5.100000
1,3-DICHLOROBENZENE	mg/kg	BDL	.600000	PDL	.600000	BDL	. 600000	BDL	5.100000
1,4-DICHLOROBENZENE	mg/kg	BDL	. 600000	BDL	.600000	BDL	.600000	BDL	5.100000
2,4,5-TRICHLOROPHENOL	mg/kg	BOL	. 500000	BDL	. 600000	BDL	.630006	BDL	5.100000
2.4.6-TRICHLOROPSENOL	mg/kg	BCL	.600000	BDL	600000	BDL	.600000	BDL	5.100000
2,4-DICHLOROPHENOL	mg/kg	BDL	.600000	BOL	.600000	BOL	.600000	BDL	5.100000
2.4-DIMETHYLPHENOL	mg/kg	BDL	.600000	BOL	600000	BDL	. 600000	BDL	5.100000
2,4-DINITROPHENOL	me,/kg	EDL	3.000000	BDL	3.000000	BDL	3.000000	BDL	26.000000
2-CHLORONAPETHALENE	mg/kg	BDL	.600000	BDL	.600000	PDL	.600000	BDL	5.100000
2-CHLOROPHENOL	ng/kg	BDL	.600000	BDL	.600000	BDL	.600000	BDL	5.100000
2-METHYL-4 S-DINOTROPHENOL	mg/kg	BOL	3.000000	BDL	3.000000	BDL	3.000000	BDL	26.000000
2-METHYLNAPHTHALENE	mg/kg		.040000	BDL	.600000	BDL	.600000	BDL	5.100000
2-METHYLPHENOL	mg/kg	BDL	. 600000	BCL	. 600000	BDL	.600000	BDL	5.100000
2-NITROANILINE	mg/kg	BDL	3.000000	BOL	3.000000	BDL	3.000000	BDL	26.000000
2-NITROPHENOL	mg/kg	BDL	.600000	BDL	. 600000	BDL	.600000	BOL	5,100000
3,3-DICHLOROBENZIBINE	mg/kg	BDL	1.200000	BDL	1.200000	BDL	1.200000	BDL	10.000000
3-NJTROANILINE	mg/kg	BDL	3.000000	BDL	3.000000	BDL	3.000000	BUL	26.000000
4-BROHOPHENYL ETHER	ing/kg	BDL	. 600000	BOL	. 600000	BDL	.600000	BCL	5.100000
4-CHLORO-3-METHYLPHENOL	ing/kg	BDL	1.200000	BDL	1.200000	BDL	1.200000	BDL	10.000000
4-CELOROANILINE	mg/kg	BOL	1.200000	BDL	1.200000	BDL	1.200000	BDL	10.000000
4-CHLOROPHENYL PHENYL ETHER	mg/kg	BDL	. 600000	BOL	. 500000	BDL	.600000	BDL	5.100000
4-METHYLPHENOL	mg/kg	BDL	.600000	PDL	.600000	BDL	.600000	BDL	5.100000
4-NITROANILINE	mg/kg	BDL	3.000000	BDL	3.000000	BDL	3.000000	BDL	26.000000
4-NITROPHENOL	mg/kg	BOL	3.000000	BDL	3.000000	BOL	3.000000	BOL	26.000000
ACENAPETHENE	mg/kg	BDL	. 600000	BDL	.500000	BOL	.600000	BDL	5.100000
ACENAPHTYYLENE	mg/kg	BDL.	. 600000	BDL	.600000	BOL	. 600000	BDL	5.100000
ANILINE	mg/kg	BOL	1.200000	BDL	1.200000	BDL	1.200000	BDL	10.000000
ANTHRACENE	mg/kg	BDL	.600000	BOL	. 600000	BDL	. 600000	BDL	5.100000
BENZILINE	mg/kg	BOL	3.000000	PDL	3,000000	BUL	3.000000	BDL	26.000000
BENZO(a) ANTHRACENE	mg/kg	BOL	. 600000	BDL	.600000	BOL	. 600000	BDL	5.100000
BENZO(a)PYRENE	mg/kg		.400000	BOL	.600000	BOL	.500000	BDL	5.100000
BENZO(b) FLUORANTHENE	mg/kg		. 560000	BDL	.600000	BDL	.600000	BDL	5.100000
BENZO(g,h,1)PERYLENE	mg/kg	BDL	. 600000	BDL	.500000	BDL	.600000	BDL	5.100000
BENZO(k) FLUORANTHENE	mg/kg	BCL	.600000	BDL	. 600000	BDL	. 600000	BDL	5.100000
BENZOIC ACID	mg/kg	BDL	3.000000	BOL	3.000000	BDL	3.000000	BDL	25.000000
BENZYL ALCOHOL	mg/kg	BDL	1.200000	BDL	1.200000	BDL	1.200000	BDL	10.000000
BIS(2-CHLORGETHOXY)METHANE	mg/kg	BDL	. 600000	BDL	.600000	PDL	.600000	BDL	5.100000
BIS(2-CHLORGETHYL)ETHER	mg/kg	BOL	600000	BOL	. 600000	BDL	600000	BDL	5.100000
BIS(2-CHLORDISOPROPYL)ETHER	mg/kg	BOL	. 600000	BDL	.600000	BOL	. 600000	BDL	5.100000
BIS(2-ETHYLHEXYL)PHTHALATE	mg/kg		.370000		. 590000	bDL	.600000	BDI.	5.100000
BUTYLEENZYLPHTHALATE	mg/kg	BOL	.600000	BDL	, 600000	BOL	.60000	BDL	5.100000
CHRYSENE	mg/kg		.090000	BDL	. 600000	BDL	. 600000	TUE	5.100000
DI-H-OCTYLPETHALATE	mg/kg		. 200000	EDL	.600000	BOL	. 600000	BDL	5.100000
DIBENZO(a,h)ANTHRACENE	mg/kg	BDL	. 500000	BOL	. 600000	BDI.	. F00000	BDL	5.100000
DISENZOFURAN	rg/kg	BDL	.600000	BOL	.600000	BDL	.600000	DOL	5.100000
DIBUTYLPHTHALATE	mg/kg	•	. 24/1000		.410000	BOL	.600000	BUL	5.100000
DIETHYL PHTHALATE	தை/இத	BDL	.600000	HOL	.600000	BOL	.600000	BDL	5.100000
DIMETHYL PHTHALATE	mg/kg	BDL	.600300	BDL	.600000	80L	.600000	BDL	5.100000
FLUORANTHENE	mg/kg		. 540000	BCL	.600000	PDL	.600000	BDL	5.100000
FLUORENE HEVACULOROBENTENE	mg/kg	BOL	.600000	BDL	.600000	5DL	.600000	BDL	5.100000
HEXACHLOROBENZENE	mg/kg	30L	.600000	BCL	.600000	BDL	.500000	BDL	5.100000
HEXACHLOROBUTADIENE	ωng/kg	BOL	. 600000	BDL.	,600000	BDL	.600000	BDL	5.100000
HEXACHLOROCYCLOPENTAD (ENE	ang/kg	BDL	. 600000	BDL	. 600000	BDL	. 600000	BOL	5.100000

Below Detection Limit Not Analyzed Diluted Out BDL NA #7

PARAMETER	UNIT	1	FTASH1	. 1	FTASH2		FTAEH3		FTAFE1
HEXACHLOROETHANE	mg/kg	BDL	.600000	BDL	.600000	BDL	.600000	BDL	5.100000
INDENO(1,2,3-c,d)PYRFNE	mg/xg	BDL	,600000	BDL	.600000	BDL.	.300000	BDI.	5.100000
ISOPHORONE	mg/kg	BDL	. 600000	BOL	. 600000	BDL	.603360	BDL	5.100000
N-NITROSO-DI-METHYLAMINE	ma/ka	BDL	. 600000	BDL	.600000	BDL	.600000	BDL	5.100000
N-NITROSO-DI-N-PROPYLLMINE	mg/kg	BDL	. 600000	BDL	.500000	BDL	.600000	BDL	5.100000
N-NITROSO-DI-PHENYLAMINE	mg/kg	BDL	. 600000	BOL	.600000	BDL	.600000	BOL	5,100000
NAPHTHALENE	mg/kg	EDL	. 600000	BDL	.600000	BDL	.600000	BDL	5.100000
NITROBENZENE	mg/kg	BDL	. 600000	BDL	. 600003	BDL	. 300000	BDL	5.100000
PENTACHLOROPHENOL	mg/kg	BOL	3.000600	3DL	3.000000	BDL	3.000000	BDL	26.000000
PHENANTHRENE	as/ks		. 060000	BDL	.600000	BDL	. 600000	BDL	5.100000
PHENOL	mg/kg	SDL	. 600000	BOL	.600000	BDL	. 600000	BDL	5.100000
PYRENE	mg/kg		. 320000	BDL	.600000	BUL	.600000	BOL	5,100000
2,4-DINITROTOLUENE	mg/kg	BDL	600000	BDL	.600000	BOL	. £00000	BDL	5.100000
2,6-DIMITROTOLUENE	mg/ka	BDL	.600000	BOL	.600000	BDL	.600000	BDI.	5.100000
ANTIMONY	mg/kg	BDL	. 499000	SOL	. 499000	BCL	.499000	BDL	. 500000
ARSENIC	mg/kg		1.900000		. 299000		2.800000		10.200000
BERYLLTUM	mg/kg		.698000	SDL	.499000		1.300000		1.300000
CADMIUM	mg/kg		768000		1.230000		.270000		5.940000
CHROMIUM	mg/kg		11.000030		6.690000		14.400000		69.000000
COPPER	mg/kg		6.180000		52.500000		9.480000		32.800000
LEAD	mg/kg		32.200000		15.000000		59.700000		301.000000
MERCURY	നു / 🖟 ഭൂ	BOL	.100000	BDL	1,160000	BDL	.100000	BDL	.100000
NICKEL	mg/kg		10.700000		7.590000		13.300000		352.000000
SELENIUM	mg/kg	FDL	. 499000	BOL	. 499000	BDL	.499000	BDL	. 500000
SILICON	mg/kg		23.200000		34.200000		26.800000		18.300000
SILVER	mg/kg	EDL	. 100000	BOL	.100000		. 200000		1.500000
THALLIUM	mg/kg	EDL	. 100000	PDL	.100000	BOL	.100000	BDL	.100000
ZINC	mg/kg		146.000000		136.000000		140.000000		381,000000
PCE 1016	mg/kg	LGE	.003000	BDL	.003000	BOL	.003000	BDL	003000
PCB 1221	mg/kg	BDL	.003000	PDL	.003500	BDL	.003000	BDL	.003000
PCE 1232	mg/kg	EDL	.003000	BCL	.003000	BDL	.003000	BDL	. 203000
PCB 1242	mg/kg	BDL	.003000	BOL	003000	BOL	. 003000	BDL	. 003000
PCB 1248	mg/kg	BDL	.003000	305	.003000	BCL	.003000	BDL	.003000
PCB 1254	mg/kg	BOL	.003500	BDL	.003000	3DL	.003000	BOL	.003000
PCE 1260	mg/kg	BDL	. 003000	BOL	.003000	BDL	.003000		. 380000
ALDRIN	mg/kg	BOL	.000360	BDL	.000300	BDL	.000300		.000900
CHLORDANE	mg/kg	BDL	. 003000	BOL	.003005	BDI.	.003000	BDL	.003000
DIELDRIN	mg/kg	BDL	. 000303	BDL	.000300	BDL	.000300	BDL	.000200
ENDOSULFAN I	mg/kg	BDL	.000300	BOL	.000300	BDL	.000300	BDL	.000300
ENDOSULFAN II	mg/kg	BOL	.005300	BDL	. 200300	BUL	.000300	BDL	.000300
ENDOSULFAN SULFATE	nug/kg	BDL	.000300	BOL	.000300	BDL	. 200300	BDL	. 000300
ENDRIN	mg/kg	BDL	.000300	BDL	.000300	BDI.	.000300		.093000
ENDRIN ALDEHYDE	mg/kg	BDL	. 000300	BOL	.000300	BOL	.000300	BDL	000300
HEPTACHLOR	mg/kg	BUL	.000300	80L	.000300	BDL	.000300	BOL	.000300
HEPTACHLOR EPOXIDE	mg/kg	BOL	. 200322	80L	.000300	BDL	.000300	BDL	.000300
METHOXYCIILOR	mg/kg	BDL	.000300	SOL	.000300	BOL	.000300	BDL	.000300
PPDDD	mg/kg		,021000		901100	BOL	.000300	BDL	.000360
PPDDE	mg/kg		,097000		.000400		.024000	gor	.190000
PPDDT Toxiphene	mg/kg	ROT	.130000	ent	,00530C 003000	unt	.100000	BDL	.000300
TON PHENE	ma/ka ma/ka	BOL BDL	.003000 .000300	BOL	, 003600 00360	BOL	.003000	BOL	.003000
b-BHC		BDL	.000300	30L	,000360 ,000300	DI/ L	.000300 .005400	BDL	.000500
d-BHC	mg/kg mg/kg	9DF	.000300	BOL	.000300	BOL	.003400	BDL	.000300
g-BRC	mg/kg mg/kg	000	.000400	BOL	.000300	BOL	.000300	BOI.	.000300 .00 03 00
1,1,1-TRICHLOROETHANE	mg/kg mg/kg	BDL	.025000	BOL	.025000	BOL	.025000	BOL.	.025000
a, a, a in concentration	ung, A &		, 52,5000	UUL	,923000	806	. 023000	30L	.0000

Below Detection Limit Not Analyzed Diluted Out BOL NA #7

PARAMETER	UNIT	FTASH1		FTASE2		FTASH3		FTAFE1	
1,1,2,2-TETRACHLOROETHANE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
1,1,2-TRICKLOROETHANE	mg/kg	BDL.	.025000	BDL	.025000	BDL	.025000	BDL	.025000
1,1-DICHLOROETHANE	mg/kg	BDL	.025000	BDL	.025000	BDL	. 025000	BDL	.025000
1,1-DICHLOROETHENE	mg/kg	BOL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
1,2-DICHLOROETHANE	nng/kg	BDL	.025000	BDL	.025000	BDL	.025000	BUL	.025000
1,2-DICHLOROPROPANE	mg/kg	EDL	.025000	BOL	.025000	BOL	.025000	BDL	.025000
2-BUTANONE	mg/kg	BDL	. 509000	BDL	. 500000	BCL	. 500000	BDL	. 500000
2-CHLCROETHYLVINYLETHER	mg/kg	BDL	.050000	BDL	.050000	BDL	.050000	BDL	. 050000
2-HEXANONE	mg/kg	BCL	. 250000	BDL	.250000	BDL	. 250000	BDL	.250000
4-METHYL-2-PENTANONE	mg/kg	BDL	.250000	BDL	. 250000	BDL	. 250000	BDL	.250000
ACETONE	ng/kg		1.100000	BDL.	. 500000	BDL	. 500000	BDL	. 50000ა
ACROLEIN	ng/kg	BDI.	.500000	BDL	.500000	BDL	.500000	BDL	. 500000
ACRYLONITRILE	mg/kg	BDL	. 500000	BOL	.500000	BDL	.500000	BDL	. 500000
BENZENE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
BROMODICHLOROMETHANE	mg/kg	BOL	.025000	BDL	. 025000	BDL	.025000	BDL	.025000
BROMOFORM	mg/kg	BEL	.025000	BDL	.025000	BUL	.025000	BDL	.025000
BROMOMETHANE	mg/kg	BDL	.050000	BDL	.050000	BDL.	.050000	BDL	.050000
CARBON TETRACHLORIDE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
CARBOMDISULFIDE	mg/kg	BDL	025000	BDL	.025000	BDL	.025000	BDL	.025000
CHLOROBENZENE	mg/kg	BDL	.025000	BDL	.025000	RDL	.025000	BDL	.025000
CHLOROETHANE	mg/kg	BDL	.050000	BDL	050000	BUT	.050000	BDL	.050000
CHLORGFORM	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
CHLOROMETHANE	mg/kg	BDL	.050000	BOL	.050000	BOL	.050000	BDL	.050000
C1S-1,2-DICHLOROETHENE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
CIS-1,3-DICHLOROFROPENE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
DIBROMOCHLOROMETHANE	a.g/kg	BDL	.025000	BDL	.025000	BOL	.025000	BDL	.025000
ETHYLBENZERE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
MUTHYLENE CHLORIDE	mg/kg		. 550000		.100000	BDL	.025000		.076000
STYRENE	mg/kg	BDL	.025000	BDL	.025000	BDL	.025000	BDL	. 025000
T-XYLEHE	mg/kg	BOL	.025000	BDL	.025000	BDL	.025000	BDL	025000
TETRACHLOROETHENE	mg/kg	EDL	.025000	BDL	.025000	BDL	.025000	BDL	.025000
TOLUENE	mg/kg	BDI.	.025000	BDL	.025000	BDL	.025000	BOL	.025000
TRANS-1,2-DICHLOROETHENE	mg/kg	BOI.	.025000	BDL	.025000	BDL	.025000	BDL	.025000
TRANS-1,3-DICHLOROPROPENE	mg/kg	3DL	025000	BDL	.025000	BDL	.025000	BDL	.025000
TRICHLORGETHEME	mg/kg	BDL	. 02 5000	BDI.	.025000	BOL	. 025000	BOL	.025000
VINYL ACETATE	mg/kg	BDL	26 .00	BDL	.250000	BDL	. 250000	BCL	.250000
VINYL CHLORICE	mg/kg	BDL	.0_ 0000	BOL	,050000	BDL	.050000	BDL	.050000
2,4,6-TRIBROMOPHENOL-S	I	i	01.000000		87.600000		89,500000		44.100000
2-FLUGROBI PHENYL-S	1		57.30000n		36.400000		83.100000		53.900000
2-FLUOROPHENOL-S	I		16.600000		15.700000		18.300000		45.700000
NITROBENZENE-D5-S	X .		26.800000		62.800000		24.500000		60.800000
P-TERPHENYL-D14-S	7		55.100000		55.600000		59,100000		95.350000
PHENOL-D5-S	*		38.400000		39.500000		45,700000		44.900000
1,2-DICHLOROETHANE-D4-S	Z		89,900000		113.000000		98.900000		89.600000
4-BROMOFLUOROBEHZENE-S	1	1	34,000000		114.000000		105.000000		112.000000
TCLUENE-D8-S	1		81.200000		93.500000		84.200000		117.000000

Below Detection Limit Not Analyzed Diluted Out BCL

NA ∌7

PARAMETER	UNIT		FTAFE2		ICD BLANK #1	METHOL	BLANK #2
1,2,4-TRICHLORGHENZENE	mg/kg	BDL	5.700000		.600000	NA.	
1,2-DICHLOROBENZENE	mg/kg	BDL		-	.600000	NA NA	
1,2-DIPHENYLHYDRAZINE	mg/kg	BDL			. 600000	NA.	
1,3-DICHLORGBENZENE	mg/kg	BDL			.600000	NA.	
1,4-DICHLOROBENZENE	mg/kg	BDL			.600000	NA.	
2,4,5-TRICHLOROFHENC	mg/kg	DDL			.600000	NA NA	
2,4,6-TRICHLOROPHENOL	mg/kg	BDL			.600000	NA NA	
2,4-DICHLOROPHENOL	mg/kg	BCL			. 500000	NA.	
2,4-DIMETHYLPHENOL	mg/kg	BDL			. 600000	NA.	
2,4-DINITROPHENOL	mg/kg	BUL			5.000000	NA NA	
2-CHLORONAPHTHALENE	mg/kg	BDL	5.700000		.600000		
2-CHLOROPHENOL	mg/kg	BDL				NA Na	
2-METHYL-4,6-DINOTROPHENOL	mg/kg	BDL			.500000	NA NA	
2-METHYLNAPHTHALENE	mg/kg	BDL	5.700000		3.000000	NA	
2-METEYL PHENOL	mg/kg	BDL	5.700000		.600000	NA NA	
2-NITROANILINE	· · · · ·			BOL	.600000	NA	
2-NITROPHENGL	mg/kg	BDL	28.000000	BDL	3.000000	NA	
3,3-DICHLOROBENZIDINE	mg/kg	BDL	5.700000	BDL	. 500000	NA	
	mg/kg	3DL	11.000000	BDL	1.200000	NA	
3-NITROANILINE	mg/kg	BDL	28,000000	PDL	3.000000	NA	
4-BROMOPHENYL ETHER	mg/kg	EDL	5.700000	BDL	. 600000	NA	
4-CHLORO-3-METHYLPHENOL	mg/kg	BDL	11.000000	BDL	1.200000	NA	
4-CHLOROANILINE	mg/kg	BDL	11.000000	BDL	1.200000	NA	
4-CHLOROPHENYL PHENYL ETHER	mg/kg	BDL	5.700000	FDL	.600000	NA	
4-METHYLPHENOL	mg/kg	BDL	5,700060	BDL	.600000	NA	
4-NITROANILINE	mg/kg	BDL	28.000000	PDL	3.000000	NA	
4-NITROPHENOL	mg/kg		28.000000	BOL	3.00000	NA	
ACENAPHTHENE	mg/kg	BDL	5.700000	BDL	. 600000	NA	
ACENAPHTHYLENE	mg/kg	BDL	\$.700000	BDL	. 600000	NA	
ANILINE	mg/kg	BDL	11.000000	BDL	1.20000	NA	
ANTHRACENE	mg/kg	BDL	5.700000	BOL	. 600000	NA	
BENZIDINE	mg/kg	BDL	28.000000	BDL	3.000000	NA	
BENZO(a)ANTHRACENE	mg/kg	BCL	5.700000	BDL	.600000	NA	
BENZO(a) PYRENE	mg/kg	BDL	5.760000	BDI.	.600000	NA	
BENZO(b)FLUORANTHENE	mg/kg	BDL	5.700000	BOL	. 600COQ	NA	
BENZO(g,h,i)PERYLENE	mg/kg	EDL	5.700000	BDL	. 600000	NA	
BENZO(k)FLUORANTHENE	ong/kg	EDL	5.700000	BDL	. 600000	NA	
BENZOIC ACID	mg/kg	BDL	28.000000	BOL	3.000000	NA	
BENZYL ALCOHOL	mg/kg		11.000000	BDL	1.200000	NA	
BIS (2-CHLOROETHOXY) NETRANE	mg/kg	BDL	5.700000	BDL	. 600000	NA	
BIS(2-CHLOROETHYL)ETHER	mg/kg	BDL	5.700000	BDL	600000	NA	
BIS(2-CHLOROISOPROPYL)ETHER	mg/kg	BDL	5.700000	BDL	. 600000	NA	
BIS(2-ETHYLHEXYL)PHTHALATE	mg/kg			BOL	. 600000	NA	
TALAHTHALYSENERGYLVUE	mg/kg	BDL	5.700000	BOL	. 600000	HA	
CHRYSENE	nig/kg	BDL	5.700000	BOL	. 600000	NA	
OI - N-OCTYLPHTHALATE	mg/kg	BDL	5.700000	POL	.600000	NA	
IBENZO(4, h) ANTHRACENE	mg/kg	BDL	5.70000	BDL	600000	NA	
IBENZOFURAN	ng/kg	BDL	5.700000	ROL	. 600000	MA	
DIBUTYLPHTHALATE	mg/kę	BDL	5.700000	BD*,	600000	NA	
TETHAL AVITAIN	mg/kg	BDL	5.700000	BOL	. 600000	NA	
IMETHYI, PHTHALATE	mg/kg	BDL	5.700000	BOL	. 600000	NA	
LUORANTHENE	mg/kg	BOL	5.700000	BDL	. 600000	MA	
LUORENE	mg/kg	BCL	5.700000	BOL	. 600000	NA	
EXACHLOROBENZENE	mg/kg	BDL	5.700000	BOL	. 600000	NA	
EXACHLOROBUTADIENE	mg/kg	BOL	5.700000	BOL	. 600000	NA	
EXACHLOROGYCLOPENTADIENE	mg/kg	BOL	5.700000	BCL	. 600000	NA	

BDL NA #? Below Detection Limit Not Analyzed Diluted Out

PARAMETER	UNIT		FTAFE2	METHO	D BLANK #1	METE	OD BLANK #2
HEXACHLOROETHANS	mg/kg	BDL.	700000	BDL	.600000	NA	
INDENO(1,2,3-c,d)PYRENE	mg/kg	BDL	5.700000	BDL	.600000	KA	
ISOPHORONE	mg/kg	BDL	5.700000	BOL	. 600000	NA	
N-NITROS/O-DI-METHYLAMINE	mg/kg	BDL	5.700000	BDI.	. 600000	NA	
N-NITROSO-DI-N-PROPYLAMINE	mg/kg	BDI.	5.790000	BDL	.600000	ÄÄ	
N-NITROSO-DI-FHENYLAMINE	mg/kg	BDL	5.700000	BDL	. 500000	NA	
BRITHALERE	mg/kg	BDL	5.70(000	BDL	. 600000	NA	
NITROBENZENE	mg/kg	BDL	5.700000	BDL	. 600063	NA	
PENTACHLOROPHENCL	mg/kg	BDL	28.000000	BDL	3.000000	NA	
PHENANTHRENE	mg/kg	BDL	5.700000	BDL	. 600000	NA	
PHENOL	mg/kg	BùL	5.700000	BDL	. 500000	NA	
PYRENE	mg/kg	BDL	5.700000	BDL	.600000	NA	
2,4-DINITROTOLJENE	mg/kg	BDL	5.700000	BOL	.600000	NA	
2,6-DINITROTOLUENE	mg/kg	BDL	5.700000	BDL	. 600000	NA	
ANTIMONY	mg/kg	BDL	.499000	NA		NA	
ARSENIC	mg/kg		3.590000	NA		NA	
BERYLLIUM	mg/.g		.799000	BDL.	.005000	NA	
CADMIUM	mg/kg		7.810000	BDL	.000100	NA	
CHROMIUM	mg/kg		26.100000	BDL	.020000	ÑA	
COPPER	mg/kg		28.600000	BDL	.030000	NA	
LEAD	mg/kg		244.000000	NA		NA	
MERCURY	mg/kg		.804000	NA		NA	
NICKEL	mg/kg		21.600000	BCL	. 030000	NA	
SELENIUM	mg/kg	BDI.	.499000	BDL	.005000	NA	
SILICON	mg/kg		35.400000	NA		NA	
SILVER	oug./kg		25.500000	BDL	.001000	NA	
THALLIUM	mg/kg	BDL	. 100000	NA		NA	
ZINC	mg/kg		234.000000	BDL	.010000	NA	
PCB 1016	mg/kg	BOL	.003000	BDL	.003000	BDL	.003000
PCB 1221	mg/kg	BDL	.003000	BOL	.003000	BDL	.003000
PCB 1232	ற்கு / இத	BDL	.003000	BOL	.003000	BOL	.003000
PCB 1242 PCB 1248	mg/kg	BDL	.000600	BOL	.003000	BDL	.003000
PCB 1254	ing/kg	BDL	.003000	BOL	.003000	BDL	.003000
PCB 1260	ong/kg	BDL	.003000	BOL	.003000		.042000
ALDRIN	nug/kg	901	. \$79000	BUL	.003000	BDL	.003000
CHLORDAME	mg/kg	BDL	.000300	BDL	.000300	BDL	.000300
DIELDRIN	mag/kg	BDL	.003000	BDL	.003000	BDL	.003000
ENDOSULFAN I	mg/kg mg/kg	BOL	.000300	BOL	.000300	BDL	.000300
ENDOSULFAN II	mg/kg	BDL BDL	.000300	BOL	.000380	BDL	.000300
ENDOSULFAN SULFATE	mg/kg mg/kg	BOL	.000300	BDL	.000300	BOL	.000300
ENDRIN	mg/kg	BDL	.000300	BDL	.000300	BDL	.000300
ENDRIN ALDEHYDE	mg/kg	BDL	.000300	BOL	.000300	BDL	.000300
HEPTACHLOR	mg/kg	200	.001400		.001800	BOL	.000300
HEFTACHLOR EPOXIDE	mg/kg	PDL	.000300	BOL	.001800 .000300	BDL	.000300
METHOXYCHLOR	mg/kg	BOL	.000300	BDL	.000300	BDL	.000300
PPDDD	mg/kg	EDL	.000300	BOL		BOL	.000300
PPDDE	mg/kg		. 110000	BUL	.000300 .000300	BDL BDL	.000300 .000300
PPDDT	mg/kg		.073000	50L			
TOXAPHENE	mg/kg	BDL	.003000	BDL	.001300 .003000	BDL BDL	.000300
a-BHC	mg/kg	BOL	.000300	BDL	.003000	BDL	.003000 .000300
b-BHC	mg/kg	BDL	.000300	BDL	.000300	BOL	.000300
d-BHC	mg/kg	BDL	000300	BDL	.000300	BDL.	.000300
*-BHC	mg/kg	BDL	. 000300		.000400	BOL.	.000300
1,1,1-TRICHLOROETHANE	mg/kg	BOL	.025000		.000400		.000300

Below Detection Limit Not Analyzed Diluted Out BDL NA #7

PARAMETER	UNIT	FTAFE2		METHOD BLANK #1	METHOD BLANK #2
1,1,2,2-TETRACELOROETHANE	mg/kg	BDL	.025000	**	
1,1,2-TRICHLOROETHANE	mg/kg	PDL	. 025000	*-	
1,1-DICHLOROETHANE	mg/kg	BDL	.025000	••	
1,1-DICHLOROETHENE	mg/kg	BDL	.025000	**	
1,2-DICHLOROETHANE	ng/kg	BUL	.025000	•	
1.2-DICHLOROPROPANE	mg/kg	B)L	.025000		
2-BUTANONE	ng/kg	PDL	. 500000		
2-CHLOROETHYLVINYLETHER	mg/kg	BDL	.050000		
2-HEXANONE	mg/kg	BDL	. 250000		
4-METHYL-2-PENTANONE	mg/kg	BDL	. 250000	••	
ACETONE	mg/kg	BDL	500000		••
ACROLEIN	mg/kg	BDL	. 500000		••
ACRYLONITRILE	mg/kg	BDL	, 500000		
BENZENE	mg/kg	BDL	. 025000		
BROMODICHLOROMETHANE	mg/kg	BDL	.025000		
BROMOFORM	mg/kg	BDL	.025000	•••	
BROMOMETHANE	mg/kg	BDL	.050000		• •
CARBON TETRACHLORIDE	mg/kg	BDL	.025000	**	••
CARBONDISULFIDE	ng/kg	BDI.	.025000		
CHLOROBENZENE	mg/kg	BDL	.025000		
CHLOROETHANE	mg/kg	BOL	.050000		
CHLOROFORM	mg/kg	BDL	.025000	,	
CHLOROMETHANE	mg/kg	BDL	. 050000	••	
CIS-1,2-DICHLOROETHENE	mg/kg	BDL	. 025000		••
CIS-1,3-DICHLOROPROPENE	mg/kg	BDL	.025000		
DIBROMOCHLOROMETHANE	mg/kg	BDL	.025000	pris uga	
ETHYLBENZENE	mg/kg	BDL	.025000		~ ~
METHYLENE CHLORIDE	mg/kg		.059000		
STYRENE	mg/xg	BDI.	.025000		
T-XYLENE	mg/kg	BDL	.025000	• •	
TETRACHLOROETHENE	mg/kg	BDL	.025000		
TOLUENE	mg/kg	BDL	.025000		
TRANS-1, 2-DICHLOROETHENE	mg/kg	BOL	. 025000		
TRANS-1,3-DICHLOROPROPENE	mg/kg	BDL	.025000		
TRICHLOROETHENE	mg/kg	BDL	.025000		
VINYL ACETATE	mg/kg	BDL	. 250000		**
VINYL CHLORIDE	mg/kg	BDL	. 050000		
2,4,6-TRIBROMOPHENOL-S	I	₽ 7	. 000000	93.600000	
2-FLUOROBIPHENYL-S	I	8	3.700000	72.500000	
2-FLUCROPHENOL-S	Z	6	6.500000	20.800000	
NITROBENZENE-D5-S	2		3.700000	55.000000	
P-TERPHENYL-D14-S	I		0.500000	51.700000	
PHENOL-D5-S	2		8.500000	42.500000	
1,2-DICHLORGETHANE-04-S	Z -		5.0000û0	• •	• •
4-BROMOFLUOROBENZENE-S TOLUENE-D8-S	Z		3.000000		
1000046-08-2	1	84	4.400000		

Below Detection Limit Not Analyzed Diluted Out BDL NA #7

APPENDIX L

UNDERGROUND STORAGE TANK CHEMICAL DATA LIQUID SAMPLE CHEMICAL DATA OCTOBER 1989

						1-	
PARAMETERS	UNIT	FTAUST	F	FTAUST/OILY	F	etaust/water	METHOD BLANK
1,2,4-TRICHLOROBENZENE	 mg/L		BDL	**** 000001	·	22222	~==**
1.2-DICHLOROSENZENE	mg/L		BDL	1988.000000		2.000000	
1,2-DIPHENYLHYDRAZINE	mg/L		BDL	1999,000000		2.000000	
1,3-DICHLOROBENZFNE	ng/L		BDL BDL	1509,000000 1300,000000		2.000000	.1 TM
1,4-DICHLOROBENZENE	ng/L		BDL	1990,000000		2.000000	* -
2,4,5-TRICHLOROPHENOL	mg/L		BDL	1999, 830000		2.000000	
2,4,6-TRICHLOROPHENOL	ong/L	~-	BDL	1269,000000		2.000000	
2,4-DICHLORUPHENOL	mg, L		BDI.	1909.00000		2.000000 2.000000	
2,4-DIMETHYLPHENCL	mg/L		BDL	1623,000000	_	2.000000 2.000000	
2,4-DINITROPHENCL	mg/L		EDL	5000.000000		10.000000	
2-CHLORONAPHTHALENE	ωg/L	-	BDL	1000.000000		2.000000	
2-CHLOROPHENOL	mg/L		BOL	1369.000000		2.000000 2.000000	
2-METHYL-4,6-DINOTROPHENOL			BDL	5000,000000		10.000000	
2 METHYLNAPHTHALENE	mg/L			3479,000000		6.300000	
2-METHYLPHENOL	mg/L		BDL	1952.000000		2.300000	
2-NITROANILINE	mg/L		BDL	5089.000000		10.000000	
2-NITROPHENOL	mg/L	• •	BDL	1998.900000		2.000000	
3,3-DICHLOROBENZIDINE	mg,L	- ~	BDL	2000.000000		4.000000	
3-NITROANILINE	mg/L		BDL	5000.000000		19.600000	
4-BROMOPHENYL ETHER	mg/L		BOL	1998,000000		2.00000	-
4-CHLORG-3-METHYLPHENOL	mg/L		BDL	2000.000000		4.000000	-
4-CHLOROANILINE	mg/L		BOL	2039.000000		4.000000	
4-CHLOROPHENYL PHENYL ETHER	R mg/L		BDL	1500.000000		Z.000000	
4-NITROANILINE	ing / L		BDL	5000.000000		10.000000	
4-MITROPHENOL	mg/L		BDL	5090,000000		10.000000	
ACENAPIITHENE	mg/L		BDL	1003.000100	ADL	2.000000	m w
ACENAPHTHYLENE	mg/L		BOL	1000,000000	UDL	2.000000	
ANILINE	መፈ/ኒ		BDL	2006,300000	BDL	4.000000	
ANTHRACENE	mg/L	*	BDI.	1625,000000	ECL	2.000000	
BENZIDINE	mg/L		BDL	5082,000000	BUL	10.000000	
BEHZO(a)ANTHRACENE	mg/L		PDL	1000.000000	BUL	2.000000	
BENZO(a) PYRENE	mg/L	••	BCL	1982,480000	BOL	2.000000	** **
BENZO(b)FLUCRANTHENE	mg/L	•	BDL	1000,000000	BDL	2.000000	
BENZO(g h,i) CERYLENE	ang / L		BDL	1998,000000	BOL	2.000000	
BENZO(k)FLUCRANTHENE	mg/L		SDL	1000.000000	BDL	2.000000	-
BENZOIC ACID	mg/L		BDL			10.000000	
BIS(2-CHICROFTHOYY)METHANE	ing/L		BOL			4 000000	
BIC/O CUI COOMETTE COME	mg/L		BDL	1000,000000		2.000000	
BIS(2-CHLOPOISOPROPYL)ETHER	mg/L	**	BDL	1000,000000		2.000000	- -
BIC.C. CO.IV. Constitution of the control of the co		-	EDL			2,000000	
A SERVE PORTER PARK PROPERTY AND ADDRESS.	mg/L	* *	BDL		PET	2,000000	
CUT VERNE	nig/L	• •	BOL		BOL	2.000000	
DT N OCENT BURNING	mg/L		BDL		BDL	2 000000	
DIRENTO: Livery	mg/L		BOL		BNL	2.000000	**
DIDENSOR	ma/L	• •			208	2.000000	
Officer suggests and	ong / L			1000.000000 E		2,000666	
D.T. D'INTEGET . DOSMITA L	mg/L	e	BDL.		BDL	2.000000	
DOMORPHUM BURNESS COM	aug/L		5		BDL	2.000600	* **
TI HOT - HEHERING	mag/L	•-		1005,870000		. 370090	
## 1120 mars	me/L		RUC		RDL	2.000000	••
· ·	ராத / ட்			175.000000 B	BOL	2,000000	
HEXACHLOROBENZENE n	m43 / L	·	BOL	1000.000000 5			

BDL Relow Detect.on limits Not analyzed for Diluted out

^{#7}

educado Desid	SIT	FTALST		FTATIST, GLLY		FTAUST/WATER	METHOD BLANK
HEROOTEL & Chinanes N. Cest.			501	1007 000000		2.000000	
mace/inc is a friend	tug i		901	1000 01000	501.	2 000000	
.N.28 2 1 218185	14.1		501	1/03 300303	BOL	2.000000	· =
1 C.S. & No.	54 1		901	10.0 0.0000	501	2,006000	
N NOTA SOLUMETERIAMINE	54 L		PDL	1200 000003	301	2 303030	-
	76.5		BDL	1500 000000	BOL	2.000000	~ +
N SITE II . HANG AMINE	ng L	-	501	10.7 300300	BC L	2 000000	• •
MARMY MALL NE	ng L			1243 300030		2 300000	
NITK DENIENE	ax i	**	901		BDL	2 300000	* *
rente di les impnica	- L	- +	50:		BOL	10.000000	. .
SHENANT GRENE	sa 1	* *		338,330000		.730000	
199NIL	me L		311	1000 000000		.400000	-
FYRENE	tag i		801	1000 000000	Mor	2 000000	
AMM SIA - THE YEAR	TALL				202	10.700000	w est
THERS I'AL LICEDEN TEMANS	TALL					313330.000030	
- DESCRIPTION CONTRACTOR	nak b	* *				31.000006	
						1 573003	3.6
THE STATE OF THE S	** .	• •					
2 • 18178.7 - 589	ta l		501	1000 000010	FDU	2,000000	
Line Charles Tourished	7.7 ·		200	1030 000000	BOL	2,600000	**
ANT INC. NO.	ta I			• •	201	. 064000	
4A.7EN11	TAS C			• .	301	.020000	
SERETURAM	=क्द्रा ं			••	BOL	005000	
DOM: M	TA -	• •		÷ •		. 187000	**
DIGGMI M	- A -	• •		• ~		.062000	
I1:18#	58 L	• •		* -		2.250000	
LEAL	12	. ••		• •		.182000	• •
Mr.E. C. M.C.	-x 1					.000500	••
NILKEU	54 1	* *		• •		491000	••
JILLYL M	T-4, 1	* *		• •	851	.020000	••
LIUT N	-4 -	4.7		• •		3.635880	. :
101489	*4 /	, .		- •		601008	<u></u>
True Control	74,					.004060	• •
MAT	rug 🖫			• •		\$,440000	
CON BERNE	May II.	~ *		1130500 500000		27.430000	**
108 . 16	tog 1		HUL	200660	BDL	.000200	• -
POP TIVI	7-4 , i.	•	80L	.200000	BDL	000200	**
Maria A	75	**	BCL	\$00000	BOL	.000200	
50B 12442	11.8 T	• =	BDL	. 200000	BOL	. 200200	•
FC9 15+4	**	* *	ತಿರಿದ	.200000	BOL	000200	
J.B. (2. ♥	54.5		BDL	200000	BDL	900200	~ •
teral 1. C.	14 D		Bul.	, 200000	PDI	0.00500	- *
Z2.30%	*** :	•		.010000	105	.000010	
CHOIN DAME	ng 🚶		SSE	200000	BL.	000200	• •
D1911915	14 :	• •	104	010000	MOL	000010	* *
EMD / FAN I	tor. L	*	PO! .	917998	BUL	202210	
ENDO 1 FAR 1.	may L		FSU.	,313060	BOL	,500010	. •
FIRE TO MARIE DINGS	r # . 1.		ACL	010000	PDL	.000010	
23/7 R. M	14/L	· =	BOL	617600	901	.000010	
EN GUN KLUEH C≯	₫Д	•	901.	010000	anı.	020210	• •
Half Carrier C. R.	ir g ''	•	ಕರ್ಷ	010000	BPI.	000010	
HEFTACH OR FINAL CE	有魔者是			020000	BLA.	000010	
MOTH FAMILIA	74 I		BFA.	010000	BUL.	600010	
	ting ()		BDQ	010000	Birt.	000010	

heaver who the normate No. Aretyred for Dalited cut 357

PARAMETERS	UNIT	IT PYAUST		£	FTAUST/OILY		AUST/WATER	METHOD BLANK		
PPDDE	may/L				BCL	.010000	BCL	.000010		
PPDDT	mg/L				BOL	.010300	BDL	.000010		
TOXAPHENE	mg/L				BD!	. 200000	BO".	.000200		
a-BHC	mag/L				RDL	.010000	BOL	.000015		
b: 880	mg/L				5DL	.010000	BDL	.000010		
a-BHC	mg /L				BOL	.010000	BDL	.000010		
g-BEC	mg/L				EDL	.010000	FOL	.000010		
1,1,1-TRICHLORGETHAME	ma, L	BDL	506	choopens.					BDL	.005000
1,1,2 2 TETRACHLURGETHANE	σως/L	BDI.	500	600000					BDL	.005000
1,1,2-TRICHLORGETHANE	π.த./ ்_	BOL	500	. 0000000					BDL	005000
1,1-DICHLORGETHANE	mg/L	BII.	500	000550					EDI.	.005000
1,1-DICHLORGETHENE	mg/L	BDL	500	.000000					BDL	.005000
1,2-Dicblorgethane	rg/L	BOL	500	. ၁၀၁၀၀၁					BDL	.005000
1,2-DICHLOROPROFANE	mg/L	BOL	510	000006					BDL	.005000
2-BUTANONE	mg, L	BDI.	16000	000000					BDL	,100000
2-CHUCROSTHYLVINYLETHER	mg/L	DDL	1000	.000000					BOL	.010000
2-BEXANONE	mg/L	30L	5000	300000				~=	BDL	. 230008
METHYL-2-PENTANONE	mg/L	BOL		000000				••	BDL	.050000
ACETONZ	ang/L			000000					BDL	.100000
ACROLEIN	mug/L			000000					BDL	. 100600
ACLYLONITRILE	mg/L			936639					BOL	. 150000
BENZENE	mg/L	BDL		000000					BDL	005000
BROMOUTCHLOROMETHANE	mg/L	801		000000		**			BDL	. 605000
BRUNOFORM	ang /L	851.		000000					BDL	.002000
BROHOMETHAND	mg/L	BDL		065530					BOL	.010000
CARBON TETRACHLORIDE	mg/L	BOL		200000					BDL	.005000
CARBONDISULFIDE	mg. L	ECL		000000					BOL	.005000
CHLOROPERZENE	may/L	SDL	500	060000					BDL	005000
CHLCROFTHANE	mg/L	BDL	1000.	000000					BOL	010000
CHI OROFORM	eig / L	BOL	500	000000		• •			BOL	005000
CHLCROMOTRANE	mg/L	BOL	1000	000000					BDL	
CIS+1,2-DICHLORDETHEME	mg L	Bire	*50	000000					BOL	.005000
CIS:1, 3:010HLCROPRUPENE	Mg. L	FOL	169	000000		••			DDI.	, 005000
DIBRUMXHLORUME THANE	mg/L	5 5a.	553	aanses					BDL	.005000
CTHYLDEN/ENE	mg/L		127.	000000		• •			ant	.005000
METHYLFRE CHLORIDE	ma/L	BOL	500	ევიცაი		• •		• •	#31	004500
STYKENE	mg / L	BOL	500	000444					BUL	.005000
T XYLENE	mg / L		8360	000000		••		~ -	BOL	. 005000
TFTRACHLOROETHENE	m_{R}/L	BOL	300	000UC0					BOL.	.005000
TOUTENE	TA/L		4200	იმმაშ					208	.005000
TRANS-1,2 DICHLORGETHENE	the L	BUL	500	000000					BDI.	.005000
TRANS-1, 3-DICHLORGEROFFNE	mg/L	BOL	500	300000					BOL.	. 005000
IRICALONDETHENE	mg/1.	apu		30,3900		- -			BOL	.005000
VINY, ACETATE	mg/l	AUL.	5000	200000		• •		+-	BOL	.950000
VINYL CHLORIDE	mg/L	108	1600	0.10003		• •		••	304	.010000
2.4.5° IRIBECTO THE NOTE: 3	2			-	₽ 7		# 7			
2 FLUGRONI PHLNYL - 5	I		•	-	# 7		# 7			
2 FLUCKOPHENOL S	I				#7		• 7			* *
MITROBERTENE D3-5	Z				• 7		# 7			
P TERFSERYI, D14 S	:				9 7		# 7			
PHEMOL DI S	ı				#7		# 7			
1,2-DICHLORGETHANE D4 3	:		94	100000		**			NA	
4-BRORDFILTOROBENZENE S	z		30	. page 5		• •		**	NA	
TOLLIERE D8-3	ı		70	305000		• •			MA	

Hellow Defects in Linita Not analyzed for Divided our BG1,

APPENDIX M

GROUND-WATER CHEMICAL DATA FOR SAMPLE ROUND 1 FEBRUARY 1990

WELL #	DATE	KEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-NO1	19900214	PHYSIGAL	p#	ph		5.26	0
FTA-MG1	19900214	PHYSICAL	COMBUCTIVITY	20rimu		85	C
FTA-HO1	19900214	PHYSICAL	TEMPERATURE	deg C		13.2	0
FTA-401	19900214	METALS	AMTIMONY	ug/L	•	30	30
FYA-MO1	19900214	METALS	ARSENIC	ug/L	<	1	1
FTA-MO1	19900214	METALS	BERYLLIUM	ug/L	4	1	1
FTA-HO1	19900214	METALS	CADMIUM	ug/L	<	5	5
CTA-MO1	19900214	METALS	CHRONIUM	ug/L	<	10	10
FTA-MO1	19900214	AETALS	COPPER	ug/L	<	10	10
FTA-MO1	19900214	METALS	LEAD	ug/L	«	30	30
FTA-HO1	19900214	MEYALS	HERCURY	ug/L	«	.2 15	. 2 15
FTA-MO1	19900214	METALS	NICKEL	ug/L		2	2
FTA-M01	19900214	METALS	SELENIUM SILVER	u _{by} /L ∪ezi	«	10	10
FTA-#01	19900214	METALS	TRALLIUM	ug/L ug/L		10	10
FTA-HO1	19900214 19900214	METALS METALS	ZINC	ug/L	•	19.2	5
FTA-MO1 FTA-MO1	19900214	HERBICIDES ANAL	2,4-0	ug. L	<	50	50
FTA-MOT	19900214	HERBICIDES ANAL	2,4,5-T	ug/L	ζ.	50	50
FTA-MO1	19900214	HERBICIDES ANAL	2.4.5-TP (SILVEX)	ug/L	<	50	50
FTA-MO1	19906214	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-MOT	19900214	PURGEABLE COMPO	ACRYLONITRILE	ug/L	٠,	10	10
FTA-HOT	19900214	PURGEASLE COMPO	BENZEHE	ug/L	•	5	5
FTA-MOT	19900214	PURGEAGLE COMPO	BROMOFORM	ug/L	<	5	5
FTA-HC1	19900214	PURGEABLE COMPO	SHAHTSHORE	ug/L	<	10	10
FTA:NO1	19900214	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-HO1	19900214	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
FTA-MO1	19900214	PURGEABLE COMPO	CHLORCOTSROMOMETHANE	ug/L	<	, 5	5
FTA-MO1	19900214	PURGEASLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-HO1	19900214	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-MO1	19900214	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-#01	19900214	PURGEABLE COMPO	CHLOROMETHANE	ug/l	<	10	10
FTA-MO1	19900214	PURGEABLE COMPO	DICHLORORROMOHETHANE	ug/L	•	5	5
FTA-HO1	19900214	PURGEABLE COMPO	1,2-DICHLORUGENZENE	ug/L	•	5	5
FTA-MU1	19900214	PURGEABLE COMPO	1,3-01CHEORGRENZENE	ug/L	«	5	5 5
FTA-MO1	19900214	PURGEABLE COMPO	1,4-01CHLOROSENZENE	ug/L	< <	5	5
FTA-H01	19906214	PURGEABLE COMPO	1,1-DECRLORGETHANE	ug/L	•	5	5
FTA-MO1	19900214	PURGEABLE COMPO	1,2-DICHLORGETHANE	ug/L	,	5	Ś
FTA-HOT	19900214 19900214	PURGEABLE COMPO- PURGEABLE COMPO-	1,1-DICELORGETHENE TRANS-1,2-DICHEORDETHENE	ug/L ug/L	` `	ś	5
FTA-MO1 FTA-MO1	19900214	PURGEABLE COMPO	1,2-DICHLORDEROPANE	ug/L		Ś	Ś
FTA-HO1	19900214	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-MO1	19900214	PURGEABLE COMPO	TRANS-1,3-GICHLOROFROPENE	vg/L	4	5	5
FTA-MO1	19960214	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5
FTA-MO1	19900214	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L		10	10
FTA-MQ1	19900214	PURGEABLE COMPO	1,1,2,2-TETRACHLORUETHANE	Ug/L	<	5	5
FTA-HOT	19900214	PURGEABLE COMPO	1ETRACKLOROETHENE	ug/L	<	5	5
FTA-HO1	19900214	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
FTA-HO1	19900214	PURGEABLE COMPO	1,1,1-TRICHLORGETHANE	ug/L	<	5	5
FTA-MO1	19900214	PURGEABLE COMPO	1,1,2-TRICHLOFGETHANE	ug/L	<	5	5
FTA-MOT	19900214	PURGEASUE COMPO	TRICHLORGETHENE	09/し	<	5	5
FTA-MO1	19900214	PURGEAGLE COMPO	TRICHICROFLEGROMETHANE	ug/L	<	10	10
FTA-MO1	19900214	PURGEABLE COMPO	VINTE CHEGRIDE	ug/L	•	10	10
FTA-HO1	19900214	BASE/NEUTRAL EX	ACENAPHI HE HE	ug/L	· ·	10	10
FTA-HOT	19900214	RASE/NEUTRAL EX	ACEMAPHTHTLENE	ug/L	· ·	10 10	10 10
FTA-MO1	19900214	BASE/NEUTRAL EX	ANTHRACENE BENZIDINE	ug/L	•	50	50
FTA-MO1	19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	BENZO(#1AF#RACENS	ug/L ug/l	ì	10	10
FTA-MO1 FTA-MO1	19200214 19900214	BASE/NEUTRAL EX	BENZO(B)FLUCPANTHENE	ug/L	•	10	13
FTA-MO1	19900214	BASE/NEUTRAL EX	BENZO(L) FLUCHANTHE HE	ug/L	•	10	10
FTA-MO1	19900214	BASE/NEUTRAL EX	BENZO(a)PIRENE	1.9/L	<	10	10
FTA-MOT	19900214	BASE/NEUTRAL EX	BENZO(g,h, E)PERTLENE	ug/L	<	10	10
FTA-HO1	19950214	BASE/NEUTHAL EX	BUTYLBENZYLPHTHALATE	ug/L	<	10	10
FTA-HOT	19900214	BASE/WEUTRAL FX	4-BROMOPHENYL PHENYL ETHER	ug/L	<	10	10
FTA-MO1	19200214	BASE/NEUTRAL EX	BIS(2-CHLORDETHYL)ETHER	ug/L	∢	10	10
FTA-HOT	19900214	BASE/NEUTRAL EX	81215-CHI CROETHACKA) MELHANE	Ug/L	<	10	10
FTA-MO1	19900214	BASE/NEWTRAL EX	BISCZ-ETHYLHEXYLJPHTHALATE	ug/L		47	10
FTA-HOT	19900214	RASE/NEWTRAL E (BISCS CHLOROISCEROPYLIETHER	ug/L	<	10	10
FTA-MO1	19900214	MASE/WEUTRAL EX	2-CHLOROWAPHTHALENE	ug/L	•	10	10
FTA-MO1	19900214	BASE/HEUTRAL EX	4-CHLOROPHENYL PHENYL ETHER	ug/L	*	. 10	10

WELL #	CATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO1	19900214	BASE/NEUTRAL EX	CHRYSENE	ug/t	<	10	10
FTA-MO1	19900214	BASE/NEUTRAL EX	DIBENZO(a,h)ANTHRACENE	Ug/L	<	10	10
FTA-HO1	19900214	BASE/NEUTRAL EX	DI-N-BUTYLPHTHALATE	ug/L	<	10	10
FTA-MO1	19900214	PURGEABLE COMPO	1,2-01CHLOROBENZSNE	ug/L	<	10	10
FTA-MO1 FTA-MO1	19900214 19900214	PURGEABLE COMPO PURGEABLE COMPO	1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	ug/L ug/L	· ·	10 10	10 10
FTA-HU1	19900214	BASE/NEUTRAL EX	3,3-DICHLOROBENZIDINE	ug/t	`	20	20
FTA-HO1	19900214	BASE/NEUTRAL EX	DIETHYL PHTHALATE	ug/L	<	10	10
FTA-MO1	19900214	BASE/NEUTRAL EX	DIMETHYL PHTHALATE	ug/L	<	10	10
FTA-MO1	19900214	BASE/WEUTRAL EX	2,4-DINITROTOLUENE	ug/L	<	10	10
FTA-KO1 FTA-MO1	19900214 19960214	BASE/NEUTRAL EX BASE/NEUTRAL EX	2,6-DINITROLOLUENE DI-N-OCTYLPHTHALATE	υσ/L	< <	10 10	10 10
FTA-H01	19900214	BASE/NEUTRAL EX	UIOXIN(2,3,7,8-TCDD)	ug/L ug/L	NEG	0	0
FTA KG1	19900214	BASE/NEUTRAL EX	FLUORANTHENE	ug/i.	~C4	18	10
FTA-MO1	19900214	BASE/NEUTRAL EX	FLUORENE	ug/L	<	10	10
FTA-HOT	19900214	BASE/NEUTRAL EX	HEXACHLOROBENZERE	ug/L	<	10	10
FTA-HOT	19900214	BASE/NEUTRAL EX	BRBI DATUEDRO, HOAKBH	ug/L	<	10	10
FTA-MOT FTA-MOT	19900214 19900214	RASE/NEUTRAL EX BASE/NEUTRAL EX	HEXACHLOROCYCLOPENTADIENE HEXACHLOROETHANE	ug/L	< <	10 10	10 10
FTA-MOT	19900214	BASE/NEUTRAL EX	INDENO(1,2,3-c.a)FYRENE	ug/L ug/L	~	10	10
FTA-HO1	19900214	BASE/NEUTRAL EX	I SOPHORONE	ug/L	<	10	10
FTA-MQ1	19900214	BASE/NEUTRAL EX	NAPHTHALENE	ug/L	<	10	10
FTA-MO1	19900214	SASE/HEUTHAL EX	MITROBERZENE	ug/L	<	10	10
FTA-MO1	19900214	BASE/REUTRAL EX	N-MITROSO-DI-METHYLAMINE	ug/L	<	10	10
FTA-MO1 FTA-MO1	19900214 19900214	BASE/HEUTRAL EX BASE/NEUTRAL EX	N-NITROSO-DI-PHENYLAMINE N-NITROSO-DI-N-PROPYLAMINE	ug/L ug/L	∢	10 10	10 10
FTA-HO1	19900214	BASE/NEUTRAL EX	PHEMANTHRENE	ug/L	` `	10	10
FTA-MO1	19900214	BASE/NEUTRAL EX	PYRENE	ug/L	<	10	10
FTA-MO1	19900214	BASE/NEUTRAL EX	1,2,4-TRICHLOROGEN7FNE	ug/L	<	10	10
FTA-HO1	19900214	ACID EXTRACT	4-CHLORO-3-METHYLPHENOL	ug/L	<	10	10
FTA-NO1 FTA-MO1	19900214	ACID EXTRACT ACID EXTRACT	2,4-DICHLOROPHENOL	ug/L	<	10	10
FTA-MO1	19900214 19900214	ACID EXTRACT	2,4-DIMETHYLPHENOL 2,4-DINITROPHENOL	ug/L ug/L	< <	10 50	10 50
FTA-MO1	19900214	ACID EXTRACT	2-METHYL-4, G-DINITROPHENOL	ug/L		50	50
FTA-HO1	19900214	ACID EXTRACT	2-MITROPHENOL	ug/L	<	10	10
FTA-HOT	19900214	ACID EXTRACT	4-MITPOPHENOL	ug/L	<	50	50
FTA-MO1	19900214	TOAPTKS CLOA	PENTACHLOROPHENOL	ug/L	<	50	50
FTA-HO1 FTA-HO1	19900214 19900214	ACID EXTRACT ACID EXTRACT	PHENCL 2.4.5-TRICHLOROPHENCL	ug/L ug/L	«	10 10	10 10
FTA-MO1	19900214	PESTICIDES	ALDRIN	ug/L		.04	.04
FTA-HU1	19900214	PESTICIDES	a-BHC	ug/L	•	.03	. 03
FTA-MO1	19900214	PESTICIDES	b-BHC	ug/L	<	.06	.06
FTA-KOT	19900214	PESTICIDES	g-8HC	ug/L	<	.09	.09
FTA-HO1	19900214	PESTICIDES	d-RHC	ug/L	<	.04	.04
FTA-NO1 FTA-NG1	19900214 19900214	PESTICIDES PESTICIDES	CHLORDANE 4.41-000	ug/L	«	.14	.14
FTA-HO1	195'00214	PESTICIDES	4.4'-GDE	ug/l. ug/L	``	.04	.04
FTA-#01	19900214	PESTICICES	4,41-001	ug/L	4	.12	.12
FTA-401	19960214	PESTICIDES	DIELORIN	ug/L	<	.02	.02
FTA-MO1	15900214	PESTICIDES	ENDOSULFAN 1	ug/L	<	.14	.14
FTA-MÚ1 FTA-MO1	19900214 19900214	PESTICIDES PESTICIDES	ENDOSULFAN II ENDOSULFAN SULFATE	ug/L	•	.04	.04
FTA-HO1	19900214	PESTICIDES	ENDOSCIPATE	ug/L	ζ.	.66 .06	.66 .06
FTA-MO1	19900214	PESTICIDES	ENORTH ALDEHYDE	ug/L	•	.23	.23
FTA-MU1	19900214	PESTICIDES	HEPTACHLOR	ug/L	<	.03	.03
FTA-MOT	19900214	PESTICIDES	HEPTACHLOR EPUXIDE	ug/L	<	.83	. 83
FTA-MG1	19900214	PESTICIDES	METHOXYCHLOR	ug/L	<	1.8	1.8
F1A-R01 51A-R01	19900214 19900214	PCB SCS	PC8-1016 PC8-1221	ug/L	«	. 1	.1
FTA: HOT	19900214	PCB	PCB-1232	ug/L ug/L	~	.1	.1
FTA-MG1	19900214	PC#	PC3-1242	ug/L	•	.;	: 1
FTA-MC1	19900214	PCS	PCB-1248	ug/L	∢	.1	ij
FTA-HO1	19900214	PCB	PCB-1254	ug/L	•	.1	.1
FTA-HO1	19900214	PCS PCCTICIOCS	PC8-1260	ug/L	<	3.1	.1
FTA-MQ1 FTA-MQ1	19900214 19900214	PESTICIDES TENTATIVELY COM	SHEHMAXOT JOHENM JYTUB-TREFIC	ug/L ug/L	<	2.4 15	2.4 -999
FTA-HO1	19900214	TENTATIVELY COM	UNIDENTIFIED ALKENE	ug/L ug/L		58	- 999
FTA-NO1	19900214	SURR COMP	1,2-DICHLOROETHANE-94-S	% ug/L		45.5	50
FTA-HO1	19901214	SURR COMP	TOLUENE-08-S	X ug/L		47.1	50

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO1	19900214	SURR COMP	4-BROMOFLUOROSENZENE-S	% ug/L		/9 9	<u>د</u> 0
FTA-MO1	19900214	SURR COMP	NITROBENZENE-05-S	% ug/L		48.8 22.8	50 50
FTA-H01	19900214	SURR COMP	2-FLUOROSIPHENYL-S	% ug/L		23.8	50
FTA-MO1	19900214	SURR COMP	TERPHENYL-D14	% ug/L		26.4	50
FT4-M01	19900214	SURR COMP	PHENOL-D6-S	% ug/L		30.5	100
FTA-MO1	19900214	SURR COMP	2-FLUOROFHENGL-S	X ug/L		49.2	100.1
FTA-M01	15900214	SURR COMP	2,4,6-TRIBRUNOPHENOL-D4-S	% ug/L		64	100
FTA-HO1	19900214	BASE/NEUTRAL EX	1,2-DIPHENYLHYDRAZIHE	ug/L	<	10	10
FTA-HUZ	19900214	TENTATIVELY COM	UHID AROMATIC HYDRONCARBON	ug/L		19	- 999
FTA-NO2	19900214	TENTATIVELY COM	UNIDENTIFIED CYCLIC ETHER	ug/L		10	. 0
FTA-MOZ FTA-MOZ	19900214	PHYSICAL	HQ	ρ'n		4.61	0
FTA-HOZ	19900214 19900214	PHYSICAL	COMPUCTIVITY	umhos		48	0
FTA-MOZ	19900214	PHYSICAL METALS	TEMPERATURE	deg C		13	_0
FTA-MOZ	19900214	METALS	ANTIMONY	ug/L	≺	30	30
FTA-MO2	19900214	METALS	ARSENIC	ug/L	<	1	1
FTA-MO2	19900214	METALS	SEPYLLICH	ug/L	<	í	1
FTA-MO2	19900214	METALS	CADHIUM Chrokium	ug/L	<	5	5
FTA-MO2	19900214	METALS	COPPER	ug/L	•	10	10
FTA-MO2	19900214	HETALS	LEAD	ug/L	< <	10	10
FTA-MO2	19900214	HETALS	MERCURY	ug/L	<	30	30
FTA-HOZ	19960214	METALS	NICKEL	ug/L	~	. 2 15	.2 15
FTA-MO2	19900214	METALS	SELENIUM	ug/L ug/L		2	2
FTA-MO2	19900214	METALS	SILVER	ug/L	``	10	10
FTA-H02	19900214	METALS	THALLIUM	ug/L		10	10
FTA-MOZ	19900214	METALS	ZINC	ug/L	•	23.5	5
FTA-MO2	19900214	HERBICIDES ANAL	2,4-D	ug/L	<	50	50
FTA-MO2	19900214	HERBICIDES ANAL	2,4,5-T	ug/L	<	50	50
FTA-MO2	19900214	HERBICIDES ANAL	2,4,5-TP (SILVEX)	ug/L	<	50	50
FTA-MO2 FTA-MO2	19900214 19900214	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	1.0
FTA-MOZ	19900214	PURGEABLE COMPO	ACRYLOWITRILE	ug/L	<	10	10
FTA-HO2	19900214	PURGEABLE COMPO PURGEABLE COMPO	BENZENE	ug/L	<	5	5
FTA-NO2	19900214	PURGEABLE COMPO	BROMOFORM	ug/L	<	5	5
FTA-MOZ	19900214	PURGEABLE COMPO	EARBON STATES OF THE CARBON ST	ug/L	<	10	10
FTA-MO2	19900214	PURGEABLE COMPO	CHLOROKENZENE	ug/L	«	5	5
FTA-HO2	19900214	PURGEABLE COMPO	CHLOROD I SPONOME THANE	ua/L	«	5 5	5 5
FTA-MOZ	19900214	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L ug/L	` `	5	5
FTN-HO2	19900214	PURGEABLE COMPO	CHEDROETHANE	ug/L	` `	10	10
FTA-H02	19900214	PURCEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-HOZ	19900214	PURGEABLE LOMPO	CHLOROMETHANE	ug/L	*	10	10
FTA-HO2	19900216	PURGEABLE COMPO	DICHLOROBROMCHETHANE	ug/L	<	5	5
FTA-MO2	19900214	PURGEABLE COMPO	1,2-DICHLOROSENZENE	ug/L	<	5	5
SOM-ATT	19900214	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
FTA-MOZ FTA-MOZ	19900214	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	5	5
FTA-MOZ	19900214 19900214	PURCEABLE COMPO	1,1-DICHLOROETHANE	ug/L	<	5	5
FTA-MOZ	19900214	PURGEABLE COMPO PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	•	5	5
FTA-MO2	19900214	PURGEABLE COMPO	1,1-01CHLOROETHEME TRANS-1,2-DICHLOROETHEME	ug/L	<	5	5
FTA-KO2	19900214	PURGEABLE COMPO	1,2-DICHEOROPROPANE	ug/L	<	5	3
FTA-MO2	19900214	PURCEABLE COMPG	CIS-1,3-01CHEOROPROPENE	ug/L	*	5	5
FTA-MO2	19900214	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L ug/L	< <	5 5	5 5
FTA-HO2	19900214	PURGEABLE COMPO	ETHFLBENZENE	ug/L		Š	5
FTA-MOZ	19900214	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	· ·	า์ย์	10
FTA-MGZ	19900214	PURGEABLE COMPO	1,1,2,2-TETRACHECECETHANE	ug/L	4	5	5
FTA-MC2	19900214	PURGEABLE COMPO	TETRACHLOROETHERE	Ug/L	٠,	5	5
FTA-MO2	19900214	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
FTA-MO2	19900214	PURGEABLE COMPO	1,1,1-TRICHLORCETHANE	ug/L	<	Š	5
FTA-MOZ	19900214	PURGENBLE CUMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
FTA-MOZ	19900214	PURGEABLE COMPO	TRICHLOROETHENE	Ug/L	4	5	5
FTA-MOZ FTA-MOZ	19900214	PURGEABLE COMPO	TRICHLOROFLUOREMETHANE	ug/L	4	10	10
FTA-MUZ	19900214	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
FTA-HUZ	19900214 19900214	BASE/HEUTRAL EX BASE/NEUTRAL EX	ACEMAPHTKENE	ug/L	<	10	10
FTA-HOZ	19900214	BASE/NEUTRAL EX	ACENAPHTHYLENE	ug/L	<	10	10
FTA-MO2	19900214	BASE/NEUTRAL EX	ANTHRACENE	uq/L	•	10	10
FTA-HOZ	19900214	BASE/NEUTRAL EX	SENZIDINE SENZO(D)ANTHRACENE	ug/L	*	50	50
FTA-MO2	19900214	BASE/NEUTRAL EX	BENZO(B)FLUGRANTHENE	ug/L	<	10	10
FTA-MOZ	19900214	BASE/NEUTHAL EX	BENZO(k)FLUCKANTHENE	ug/L	«	10 10	10
	•	- · · · • • • · ·		ug/L	•	10	10

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO2	19900214	BASE/NEUTRAL EX	BENZO(a)PYRENE	ug/L	<	10	10
FTA-MO2	19900214	BASE/NEUTRAL EX	BENZO(g,h,i)PERYLENE	ug/L	<	10	10
FTA-MO2	19900214	BASE/NEUTRAL EX	BUTYLBENZYLPHTHALATE	ug/L	<	10	10
FTA-M02	19900214	BASE/NEUTRAL EX	4-BROMOPHENYL PHENYL ETHER	ug/L	<	10	10
FTA-MO2	19900214	BASE/NEUTRAL EX	BIS(2-CHLOROETHYL)ETHER	ug/L	<	10 10	10 10
FTA-MO2	19900214	BASE/NEUTRAL EX	BIS(2-CHEOROETHYOXY)METHANE BIS(2-ETHYLHEXYE)PHTHALATE	ug/L	<	34	10
FTA-MO2 FTA-MO2	19900214 19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	BIS(2-CHLOROISOPROPYL)ETHER	ug/L ug/L	<	10	10
FTA-HO2	19900214	BASE/NEUTRAL EX	2-CHLORONAPHTHALENE	ug/L	<	10	10
FTA-HO2	19900214	BASE/NEUTRAL EX	4-CHLOROPHENYL PHENYL ETHER	ug/L	<	10	10
FTA-MO2	19900214	BASE/NEUTRAL EX	CHRYSENE	ug/L	<	10	10
FTA-MO2	19900214	BASE/NEUTRAL EX	DIBENZO(@,h)ANTHRACENE	ug/L	<	10	10
FTA-MO2	19900214	BASE/NEUTRAL EX	DI-M-BUTYLPHTHALATE	ug/L	<	10	10
F1A-H02	19900214	PURGEABLE COMPO	1,2-DICHLOROSENZENE	ug/L	<	16	10
F1A-M02	19900214	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	< <	10 10	10 10
FTA-MG2	19900214	PURGEABLE COMPO BASE/NEUTRAL EX	1,4-DICHLOROBENZENE 3,3-DICHLOROBENZIDINE	ug/L ug/L		20	20
FIA-MOZ FTA-MOZ	19900214 19900214	BASE/NEUTRAL EX	DIETHYL PHTHALATE	ug/L ug/L	` `	10	10
FTA-HOZ	19900214	BASE/NEUTRAL EX	DINETHY JYHTAMID	ug/L	<	10	19
FTA-MOZ	19900214	BASE/NEUTRAL EX	2,4-CINITROTOLUENE	ug/L	<	10	10
FTA-HO2	19900214	BASE/NEUTRAL EX	2,6-DINITROLOLUENE	ug/L	<	10	10
FTA-MO2	19900214	BASE/HEUTRAL EX	DI-N-OCTYLPHTHALATE	ug/L	<	10	10
FTA-MUZ	19900214	BASE/NEUTRAL EX	DIOXIN(2,3,7,8-TCDO)	ug/L	NEG	0	0
FTA-MO2	19 -00214	EASE/HEUTRAL EX	FLUORANTHENE	ug/L	<	10	10
FTA-MOZ	19900214	BASE/NEUTRAL EX	FLUGRENE	ug/L	<	10	10
FTA-MO2	19700214	BASE/NEUTRAL EX	HEXACHLORGRENZENE HEXACHLORGRENZENE	ug/L	< <	10 10	10 10
FTA-MO2 FTA-MO2	19900214 19 00214	BASE/NEUTRAL EX BASE/NEUTRAL EX	HEXACHLOROCYCLOPENTADIENE	ug/L ug/L	` `	10	10
FTA-MO2	19/00214	BASE/NEUTRAL EX	HEXACHLOROETHANE	ug/L	ζ.	10	10
FTA MOZ	19900214	BASE/NEUTRAL EX	INDENO(1,2,3-c,d)PYRENE	ug/L	<	10	10
FTA-MOZ	1-900214	BASE/WEUTRAL EX	ISOPHORONE	ug/L	<	10	10
FTA-HCZ	14900214	BASE/FEUTRAL EX	NAPHTHALENE	ug/L	<	10	10
SCH-ATA	1-900214	BASE/ EUTRAL EX	NITPOSEHZENE	ug/L	<	10	10
FTA-MOZ	7900214	BASE/NEUTRAL EX	N-MITROSO-DI-METHYLAMINE	ug/L	<	10	10
FTA-HOZ	19900214	RASE/HEUTRAL EX	N-MITROSO-DI-PHENYLAMINE	i.g/L	<	10	10
FTA-HOZ	19900214	BASE/NEUTRAL EX	N-NTTRGSO-DI-N-PROPYLAMINE PHENANTHRENE	ug/L ug/L	< <	10 10	10 10
FTA-MOZ FTA-MOZ	1 <i>9</i> 900214 1 <i>9</i> 900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	PYRENE	ug/L	` `	10	10
FYA-MO2	12700214	BASE/HEUTRAL EX	1,2,4-TRICHLOROBENZENE	ug/L	≺	10	10
FTA-HO2	19700214	TUARTES CIDA	4-CHLORO-3-METHYLPHENOL	ug/L	<	10	10
FTA-MO2	12900214	ACID EXTRACT	2,4-01CHLOROPHENOL	ug/L	<	10	10
STA-MOZ	. ~900214	ACID EXTRACT	2,4-DIMETHYLPHENOL	ug/L	<	10	10
FTA-MO2	14900214	ACID EXTRACT	2,4-DINITROPHENOL	ug/L	<	50	50
SCM-ATE	1 2700214	ACID EXTRACT	2-PETRYL-4,6-DINITROPHENOL	ug/L	<	50	50
FTA-NO2	19900214	ACID EXTRACT	2-NITROPHENOL 4-NITROPHENOL	ug/L	< <	10 50	10 50
FTA-HO2 FTA-HO2	2000214 1 2000214	ACID EXTRACT ACID EXTRACT	PENTACHLORGPHENOL	ug/L ug/L	` ` `	50	50
SOM-AT4	1 2900214	ACID EXTRACT	PHENGL	ug/L		10	10
FTA-MO2	12900214	ACID EXTRACT	2.4.5-TRICHLOROPHENOL	ug/L	<	10	10
FTA-402	12900214	PESTICIDES	ALDRIN	ug/L	<	.64	.04
SOM-ATS	19900214	PESTICIDES	a-BHC	ug/L	<	.03	.03
FTA-MOZ	1 900214	resticides	ъ-вис	ug/L	<	.06	.06
FTA-MC2	1,900214	PESTICIDES	g-8HC	ug/l	•	.09	.09
FTA-1402	19900214	PASTICIDES	d-8KC	ug/L	«	.04	.04
FTA·HO2 FTA·HO2	19700214 19900214	PESTICIDES PESTICIDES	CHLORDANE 4,4'-000	ug/L ug/L	< <	.14	.14
FTA-MOZ	19900214	PESTICIDES	4.4'-DDE	ug/L		.04	.04
FTA-MOZ	19900214	PESTICIDES	4,47-DOT	ug/L	<	.12	.12
FTA-MOZ	19900214	PESTICIDES	DIELDRIN	ug/L	<	.02	.02
FTA-HOZ	19900214	PESTICIDES	ENDOSULFAN I	ug/L	<	. 14	.14
FTA-MOZ	19700214	PESTICIDES	ENDOSULFAN II	ug/L	<	.04	.04
FTA-MO2	19700214	PESTICIDES	ENDOSULFAN SULFATE	ug/L	<	.66	,66
\$7A-M02	19900214 19900214	PESTICIDES PESTICIDES	ENDRIM ENDRIM ALDEHYDE	ug/L	∢ ∢	.06	. 06 . 23
FTA-MD2 FTA-MD2	19900214	PESTICIDES	HEPTACHLOR	ug/L ug/L		.03	.23
SOM-ATS	19900214	PESTICIDES	HEPTACHLOR EPOXIDE	ug/L		.83	.83
FTA-HO2	1990,214	PESTICIDES	METHOXYCHLOR	ug/L	<	1.8	1.8
FTA-MOZ	19900214	PCB	PCB-1016	ug/L	<	.1	.1
FTA-MOZ	19900214	PCB	PCB-1221	uq/L	<	.1	.1

というでは、10mmので

WELL #	DATE	HEADING	PARAMETER	TINU	VALUE	DET	DET LIM
FTA-HO2	19900214	PC8	PCB-1232	ig/L	<	.1	.1
FTA-MO2	19900214	PCB	PCB-1242	ug/L	<	.1	.1
FTA-NU2	19900214	PCB	PCB-1248	ug/L	<	.1	. 1
FYA-MO2	19900214	PCB	PCE-1254	ug/L	<	.1	.1
FTA-MG2	19900214	PC8	PCB-1260	ug/L	<	.1	.1
FTA-MO2 FTA-MO2	19900214 19900214	PESTICIDES	TOXAPHENE	ug/L	•	2.4	2.4
FTA-MOZ	19900214	TENTATIVELY COM	DI-TERT-BUTYL PHENCL	ug/L		15	-999
FTA-MO2	19900214	TENTATIVELY COM SURR COMP	UNIDENTIFIED ALKENE	ug/L		58	-999
FTA-MUZ	19900214	SURR COMP	1,2-DICHLOROETHANE-B4-S	% ug/L		44.9	50
FTA-MO2	19900214	SURR COMP	TOLUENE-DS-S 4-BROMOFLUOROBENZENE-S	% ug/L % ug/L		47.7	50
FTA-HOZ	19900214	SURR COMP	NITROBENZENE-05-S	% ug/L		46 17.5	50 50
FTA-MO2	19900214	SURR COMP	2-FLUOROSIPHEMYL-S	% ug/L		27	50
FTA-M02	19900214	SURR COMP	TERPHENTE-014	% ug/L		31.4	50
FTA-MO2	19900214	SURR COMP	PHENOL-D6-S	% ug/L		20.3	1.00
FTA-MO2	19900214	SURR COMP	2-FLUORCPHEMOL-S	X ug/L		41.2	100.1
FTA-MO2	19900214	SUPR COMP	2,4,6-TRIBROMOPHENOL-D4-S	% ug/L		66	100
FTA-MO2	19900214	PURGEABLE COMPO	1,1,2-TRICHLORDETHANE	ug/L	<	5	5
SOM-ATA	19900214	BASE/NEUTRAL EX	1,2-DIPHENYLHYDRAZINE	ug/L	<	10	10
FTA-MO4	19900214	PHYSICAL	pH	ph		5.94	0
FTA-HO4	19900214	PHYSICAL	CONDUCTIVITY	umhos		65	Ö
FTA-MG4	19900214	PHYSICAL	TEMPERATURE	deg C		12	0
FTA-MC4	19900214	METALS	ANTIMONY	ug/L	<	30	30
FTA-MO4	19900214	METALS	ARSENIC	ug/L	<	1	1
FTA-MO4	19900214	METALS	SERVLLIUM	ug/L	<	1	1
FTA-MO4	19900214	METALS	CADITUM	ug/L	<	5	5
FTA-MO4	19960214	METALS	CHROMILIM	ug/L	<	10	10
FTA-MG4 FTA-MG4	19900214 19900214	METALS	COPPER	ug/L	≺ ′	10	10
FTA-MU4	19900214	METALS	LEAD	ug/L	<	30	30
FTA-H04	19900214	METALS METALS	MERCURY	ug/L	<	.2	.2
FTA-MO4	19730214	METALS	MICKEL Selenium	ug/L	<	15	15
FTA-MO4	19900214	METALS	SILVER	ug/L	< -	2	2
FTA-MG4	19900214	METALS	T ILLIUM	ug/L ug/L	«	10 10	10
FTA-MO4	19900214	METALS	ZINC	ug/L	•	20	10 5
FTA-MO4	19900214	HERBICIDES ANAL	2,4-0	ug/L	<	50	50
FTA-MO4	19900214	HERBICIDES ANAL	2,4,5-T	ug/L		50	50
F) A-M04	19900214	HERBICIDES ANAL	2,4,5-TP (SILVEX)	ug/L		so	50
FTA-HO4	19900214	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-MO4	19900214	PURGEABLE COMPO	ACRYLOWITRILE	ug/L	<	10	10
FTA-HO4	19900214	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
FTA-MO4	19960214	PURGEABLE COMPO	BROWLFORM	ug/L	<	5	5
FTA-MO4 FTA-MO4	19900214 19900214	PURGEABLE COMPO	BROMONETHANE	ug/L	<	10	10
FTA-HO4	19900214	PURGEABLE COMPO PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-MC4	19900214	PURGEABLE COMPO	CHLOROSENZEVE	リタノレ	*	5	5
FTA-HC4	19900214	PURGEABLE COMPO	CHLOROD I BROMOMETHANE 2-CHLOROE I HYLV I MYL ETHER	ug/L	•	5	5
FTA-MO4	19900214	PURGEARLE COMPO	CHLOROETHANE	ug/L	٠	5	5
FTA-MG4	19900214	PURGEABLE COMPO	CHLOROFGRM	ug/L ug/L	< <	10 5	10 5
FTA-HO4	19900214	PURGEABLE COMPO	CHLOROMETHANE	ug/L	•	10	10
FTA-MG4	19900214	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L		.5	5
FTA-MO4	19900214	PURGEABLE COMPO	1,2-0 ICHLOROBENZENE	ug/L	<	ś	ś
FTA-MO4	19900214	PURGEABLE COMPO	1,3-DICHLOROSENZEPE	ug/L	<	Ś	ś
FTA MO4	19900214	PURGEABLE COMPO	1,4-01CHI.CROSENZENE	ug/L	<	5	5
FTA: HQ4	19900214	PUPGEABLE COMPO	1, 1-DICHLOROETHANE	ug/L	<	5	5
FTA-MO4	19900214	FURGEABLE COMPO	1,2-0/CHLORGETHANE	ug/L	<	5	5
F1A-904	19900214	PURGEABLE COMPO	1.1-01CHLORGETHENE	ug/L	<	5	5
FTA-N04	19900214	PURGEABLE COMPO	TRANS-1,2-GICHLORGETHENE	ug/L	<	5	5
FTA-MO4	19900214	PURGEABLE COMPO	1,2-DICHLORGEROPAME	ug/L	•	5	5
FTA-MO4	19900214	PURGEABLE COMPO	CIS-1,3-DICHLOROPHOPENE	ug/L	<	5	5
FTA-MO4	19900214	PURGEABLE COMPO	TRANS-1,3-01CHI OKOPEDENE	ug/L	<	5	5
FTA-M04 FTA-M04	19900214 19900214	PURGEARLE COMPO	THYLSEWZENE	ug/L	<	5	5
FTA:HO4	19900214	PURGEABLE COMPO PURGEABLE COMPO	METHILENE CHLORIDE	ug/L	•	10	10
FTA-MO4	19900214	PURGEABLE COMPO	1,1,2,2-TETRACHLORGETHANE	ug/L	<	5	5
FTA: HO4	19900214	PURGEABLE COMPO	TETRACHLORGETHENE	ug/L	•	5	5
FTA-MO4	19900214	PURUEABLE COMPO	TOLUENE 1,1,1-TRICHLORGETHANE	Ug/L	*	5	5
FTA-NO4	19900214	PURGEABLE COMPO	1, 1, 2-TRICHLORUETHANE	ug/L ug/L	< ·	5 5	5 5
FTA-MO4	19900214	PURGEABLE COMPO	TRICHLURGETHENE	ug/t	``	5	5
		-		-9, 0	*	,	,

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET 0	ET LIM
FTA-MO4	19900214	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-HG4	19900214	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
FTA-MO4	19900214	BASE/NEUTRAL EX	ACENAPHTHEHE	ug/L	<	10	10
FTA-MO4	19900214	BASE/NEUTRAL EX	ACENAPHTHYLENE	ug/L	<	10	10
FTA-MO4	19900214	BASE/NEUTRAL EX	ANTHRACENE	ug/L	<	10	10
FTA-MO4 FTA-MG4	19900214 19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	BENZIDINE BENZO(&)ANTHRACEKE	ug/L ug/L	< <	50 10	50 10
FTA-HO4	19900214	BASE/NEUTRAL EX	BENZO(B)FLUORANTHENE	ug/L ug/L	` `	10	10
FTA-MO4	19900214	BASE/NEUTRAL EX	BENZO(K)FLUORANTHENE	ug/L		10	10
FTA-MU4	19900214	BASE/NEUTRAL EX	BENZO(a)PYRENE	ug/L	<	10	10
FTA-MO4	19900214	BASE/NEUTRAL EX	BENZO(g,h,i)PERYLENE	ug/L	<	10	10 1
FTA-HO4	19900214	BASE/NEUTRAL EX	BUTYLBENZYLPHTHALATE	ug/L	<	10	10
FTA-MG4	19900214	BASE/NEUTRAL EX	4-BROMOPHENYL PHENYL ETHER	ug/L	<	10	10
FTA-MO4	19900214 19900214	BASE/NEUTRAL EX	BIS(2-CHLORCETHYL)ETHER	ug/L	«	10 10	10 10
FTA-MO4 FTA-MO4	19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	BIS(2-CHLORGETHYOXY)METHAME BIS(2-ETHYLHEXYL)PHTHALATE	ug/L ug/L	•	58	10
FTA-MQ4	19900214	BASE/NEUTRAL EX	BIS(2-CHLOROISOPROPYL)ETHER	ug/L	<	10	10
FTA-HO4	19900214	BASE/HEUTRAL EX	2-CHLORONAPHYHALENE	ug/L	<	10	10
FTA-MO4	19900214	BASE/HEUTRAL EX	4-CHLOROPHENYL PHENYL ETHER	ug/L	<	10	10
FTA-MO4	19900214	BASE/WEUTRAL EX	CHRYSENE	Lg/L	<	10	10
FTA-NO4	19900214	BASE/NEUTRAL EX	DIBENZO(a,h)ANTHRACENE	ug/L	<	10	10
FTA-RO4	19900214	BASE/NEUTRAL EX	DI-M-BUTYLPHTHALATE	ug/i	<	10	10
FTA-HO4	19900214	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	10	10
FTA-MO4 FTA-MO4	19900214 19900214	PURGEABLE COMPO PURGEABLE COMPO	1,3-DICHLORORENZENE 1,4-DICHLOROBENZENE	ug/L ug/L	< <	10 10	10 10
FTA-HO4	19900214	BASE/NEUTRAL EX	3,3-DICHLOROBENZIDINE	ug/L	` `	20	20
FTA-MO4	19900214	PASE/NEUTRAL EX	DIETHYL PHTHALATE	ug/L		10	10
FTA-MO4	19900214	BASE/NEUTRAL EX	DIMETHYL PHTHALATE	ug/L	<	10	10
FYA-MO4	19900214	BASE/NEUTRAL EX	2,4-DINITROTOLUENE	ug/L	<	10	10
FTA-HO4	19900214	BASE/NEUTRAL EX	2,6-0 IN ITROLULUENE	ug/L	<	10	10
FTA-NO4	19900214	BASE/HEUTRAL EX	DI-N-OCTYLPHTHALATE	ug/L	<	10	10
FTA-MO4	19900214	BASE/NEUTRAL EX	DIOXIN(2,3,7,8-TCDD)	ug/L	NEG	0	0
FTA-MO4 FTA-MO4	19900214 19900214	BASE/NEUTRAL EX	FLUORANTHENE	ug/L	*	10	10 10
FTA-HO4	19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	FLUORENE HEXACHLOROBENZENE	ug/l. ug/l		10 10	10
FTA-MO4	19900214	BASE/NEUTRAL FX	HEXACHLOROBUTAD I ENE	ug/L	``	10	10
FTA-HO4	19900214	BASE/NEUTRAL EX	HEXACHLOROCYCLOPENTAD IENE	ug/L		10	10
FTA-MO4	19900214	BASE/NEUTRAL EX	HEXACHLOROETHANE	ug/L	<	10	10
FTA-MC4	19900214	BASE/NEUTRAL EX	INDENC(1,2,3-c,d)PYRENE	ug/L	<	10	10
FTA-MO4	19900214	BASE/NEUTRAL EX	1 SOPHORONE	ug/L	<	10	10
FTA-HG4	19900214	BASE/NEUTRAL EX	NAPHTHALENE	ug/L	•	10	10
FTA-MC4 FTA-MC4	19900214 19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	NITROSENZEME N-MITROSO-DI-METHYLAMINE	ug/L	< <	10 10	10 10
FTA-MC4	19900214	BASE/NEUTRAL EX	N-NITRUSO-DI-PHENYLAMINE	ug/l ug/l	•	10	10
FTA-HO4	19900214	BASE/NEUTRAL EX	N-NITROSO-DI-N-PROPYLANINE	ug/L	<	10	10
FTA-904	19900214	BASE/NEUTRAL EX	PHENANTHRENE	ug/L	<	10	10
FTA-HOS	19900214	BASE/NEUTRAL EX	PYRENE	ug/L	<	10	10
FTA-HO4	19900214	BASE/NEUTRAL EX	1,2,4-TRICHLOROSENZENE	ug/L	<	10	10
FTA-MO4	19900214	ACID EXTRACT	4-CHLORO-3-METHYLPHENOL	ug/L	<	10	10
FTA-MU4 FTA-MO4	19900214	ACID EXTRACT	2,4-DICHLCROPHENOL	ug/L	•	10	10
FTA-HO4	19900214 19900214	ACID EXTRACT ACID EXTRACT	2,4-DIMETHYLPHENOL 2,4-DINITROPHENOL	ug/L ug/L	< <	10 50	10 50
FTA-HO4	19900214	ACID EXTRACT	2-METHYL-4,6-DINITROPHENCL	ug/L	~	50	50
FTA-HG4	19900214	ACID EXTRACT	2-MITROPHENCL	ug/L	<	10	10
FTA-MO4	19900214	ACID EXTRACT	4-NITROPHENOL	ug/i	<	50	50
FTA-MO4	19900214	ACID EXTRACT	PENTACHLOROPHENOL	ug/L	<	50	50
FTA-HO4	19900214	ACID EXTRACT	PHENCL	ug/L	<	10	10
FTA-MO4	19900214	ACID EXTRACT	2,4,5-TRICHLOROPHENOL	ug/L	<	10	10
FTA-MO4	19900214	PESTICIDES	ALDRIM	ug/L	<	.04	.04
FTA-MO4 FTA-MO4	19900214 19900214	PESTICIDES PESTICIDES	a-84C 5-84C	ug/L ug/L	*	.03 .06	.03 .06
FTA-MO4	19900214	PESTICIDES	g-SHC	ug/L	•	.09	.09
FTA-HO4	12900214	PESTICIDES	d-8HC	ug/L		.04	.04
FTA-MO4	19900214	PESTICIDES	CHLORDANE	ug/L	<	.14	.14
FTA-MO4	19900214	PESTICIDES	4,41-000	ug/L	<	.11	.11
FTA-MO4	19900214	PESTICIDES	4,41-008	ug/L	<	.04	. 04
FTA-404	19900214	PESTICIDES	4,4'-001	ug/L	<	.12	.12
FTA-HO4 FTA-HO4	19900214	PESTICIOES	DIECOLIN .	ug/L	•	.02	.02
FIA-RUS	19900214	PESTICIDES	ENOCSULFAH I	iig/L	•	. 14	. 14

FIX-MOD 19900214 PESTICIDES ENDOSUFAN SULFAN 1971 < 0.00	WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
## FIX-MOA 19900214 PESTICIDES ENDOSULPAR SULFATE 047L < .06	FTA-MO4	19900214	PESTICIDES	ENDOSUL FAM 11	110/1	•	۸۵	04
### FIT-HOAD 19900214 PESTICIDES ENDRIN ALDERM UNIT. ### FIT-HOAD 19900214 PESTICIDES ENDRIN ALDERM UNIT. ### FIT-HOAD 19900214 PESTICIDES NEPTACRICOR UNIT. ### FIT-HOAD 19900214 PESTICIDES NEPTACRICOR UNIT. ### FIT-HOAD 19900214 PESTICIDES NEPTACRICOR UNIT. ### FIT-HOAD 19900214 PESTICIDES NEPTACRICOR UNIT. ### FIT-HOAD 19900214 PESTICIDES NEPTACRICOR UNIT. ### FIT-HOAD 19900214 PESTICIDES PESTICIDES NEPTACRICOR UNIT. ### FIT-HOAD 19900214 PCB PCB PCB-1232 UNIT. ### FIT-HOAD 19900214 PCB PCB PCB PCB-1232 UNIT. ### FIT-HOAD 19900214 PCB PCB PCB PCB PCB PCB PCB PCB PCB PCB	FTA-MO4							
FIA-H04	FTA-M04	19900214			-			
FIA-H04		19900214	PESTICIDES	ENDRIN ALDENTOE				
FTA-HOA			PESTICIDES	HEPTACREOR		< ¹		
FTA-RIAC 19900214				HEPTACHLOR EPOXIDE	Ug/L	<	.83	
FTA-HOA					ug/L	<:	1.8	1.8
FTA-HOA 19900214 PCB PCB-1322 U9/L					ug/i	<	.1	. 1
FTA-H04								
FTA-H04								
FIA-NO. 19900214 PCB PCB-1256 U9/L - 1 1 FYA-NO. 19900214 PESTICIDES TOWNPIESE U9/L - 2,4 FYA-NO. 19900214 TENTATIVELY COM	-							
F74-NO. 19900214								
FYA-NO. 19900214 PESTICIDES TOXAPHESE USY/L 2.4 2.4 1.5 1.5					-			
FTA-MC4 19900214 TENTATIVELY COM DI-TERT-BUTYL PMEMS UG/L 17 -099 FTA-MO4 19900214 SURR COMP 1,2-DICHLOROSTHAME-DP-S X UG/L 46.7 50 FTA-MO4 19900214 SURR COMP TOLUCKE-BS-S X UG/L 46.7 50 FTA-MO4 19900214 SURR COMP TOLUCKE-BS-S X UG/L 46.7 50 FTA-MO4 19900214 SURR COMP NITROCKERE-S X UG/L 40.5 50 FTA-MO4 19900214 SURR COMP NITROCKERE-S X UG/L 40.5 50 FTA-MO4 19900214 SURR COMP NITROCKERE-BS-S X UG/L 40.5 50 FTA-MO4 19900214 SURR COMP NITROCKERE-BS-S X UG/L 40.5 50 FTA-MO4 19900214 SURR COMP NITROCKERE-BS-S X UG/L 40.5 50 FTA-MO4 19900214 SURR COMP TERMENT-BITEMIT-S X UG/L 26.8 50 FTA-MO4 19900214 SURR COMP TERMENT-BITEMIT-S X UG/L 26.9 100 FTA-MO4 19900214 SURR COMP TERMENT-BITEMIT-S X UG/L 26.9 100 FTA-MO4 19900214 SURR COMP TERMENT-BITEMIT-S X UG/L 26.9 100 FTA-MO4 19900214 SURR COMP TERMENT-BITEMIT-S X UG/L 26.9 100 FTA-MO4 19900214 SURR COMP Z,4,6-TRISROMPHEND-BITEMIT-S X UG/L 26.9 100 FTA-MO5 19900214 SURR COMP Z,4,6-TRISROMPHEND-BITEMIT-S X UG/L 26.9 100 FTA-MO5 19900214 SASE/KEUTRAL EX 1,2-DIPMENT-BITEMIT-S UG/L 10 10 FTA-MO5 19900214 PATSICAL TEMPERATINE UG/L 30 30 FTA-MO5 19900214 PATSICAL TEMPERATINE UG/L 30 30 FTA-MO5 19900214 RETALLS BERTILLIAM UG/L 1 1 1 FTA-MO5 19900214 RETALLS BERTILLIAM UG/L 1 1 1 FTA-MO5 19900214 RETALLS COMPER UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 1 FTA-MO5 19900214 RETALLS UG/L 1 1 1 1 FTA-MO5 19900214 PURCASILE COMPO ARTHORISME UG/L 1 1 1 1 FTA-MO5 19900214 PURCASILE COMPO ARTHORISME UG/L 1 1 1 1 FTA-MO5 19900214 PURCASILE COMPO ARTHORISME UG/L 1 1 1 1 FTA-MO5 19900214 PURCASILE COMPO ARTHORISME UG/L 1 1								
FTA-MA 19900214 TENTATIVELY COM UNIDENTIFIED ALEXEE FTA-MOL 19900214 SURR COMP 1,2-DICHLOROSTHAWE-DE-S X Ug/L 46.7 50 FTA-MOL 19900214 SURR COMP 4-BROWDFLUDROSENSEW-S X Ug/L 46.2 50 FTA-MOL 19900214 SURR COMP 4-BROWDFLUDROSENSEW-S X Ug/L 46.2 50 FTA-MOL 19900214 SURR COMP 4-BROWDFLUDROSENSEW-S X Ug/L 49.5 50 FTA-MOL 19900214 SURR COMP 4-BROWDFLUDROSENSEW-S X Ug/L 49.5 50 FTA-MOL 19900214 SURR COMP 2-FLUDROSENSEW-S X Ug/L 26.8 50 FTA-MOL 19900214 SURR COMP 7-FLUDROSENSEW-S X Ug/L 26.8 50 FTA-MOL 19900214 SURR COMP 7-FLUDROSENSEW-S X Ug/L 26.8 50 FTA-MOL 19900214 SURR COMP 7-FLUDROSENSEW-S X Ug/L 26.8 50 FTA-MOL 19900214 SURR COMP 7-FLUDROSENSEW-S X Ug/L 26.8 50 FTA-MOL 19900214 SURR COMP 7-FLUDROSENSEW-S X Ug/L 26.8 50 FTA-MOL 19900214 SURR COMP 7-FLUDROSENSEW-S X Ug/L 26.8 50 FTA-MOL 19900214 SURR COMP 7-FLUDROSENSEW-S X Ug/L 26.8 50 FTA-MOS 19900214 SURR COMP 7-FLUDROSENSEW-S X Ug/L 26.8 50 FTA-MOS 19900214 PHYSICAL TEMPERATISE ALSO NORMENOL-DA-S Ug/L 26.9 100 FTA-MOS 19900214 PHYSICAL TEMPERATISE ALSO NORMENOL-DA-S Ug/L 26.9 100 FTA-MOS 19900214 METALS ARSENC WUg/L 30 30 FTA-MOS 19900214 METALS ARSENC WUg/L 30 FTA-MOS 19900214 METALS CADMIN WUg/L 30 FTA-MOS 19900214 METALS CADMIN WUg/L 30 FTA-MOS 19900214 METALS CADMIN WUg/L 30 FTA-MOS 19900214 METALS CADMIN WUg/L 30 FTA-MOS 19900214 METALS WERELEY WUg/L 30 FTA-MOS 19900214 METALS WERELEY WUg/L 30 FTA-MOS 19900214 METALS SELECTION WUG/L 30 FTA-MOS 19900214 METALS SELECTION WUg/L 30 FTA-MOS 19900214 METALS SELECTION WUG/L 30 FTA-MOS 19900214 METALS WERELEY WUg/L 30 FTA-MOS 19900214 METALS WERELEY WUg/L 30 FTA-MOS 19900214 METALS WERELEY WUg/L 30 FTA-MOS 19900214 METALS WERELEY WUg/L 30 FTA-MOS 19900214 METALS WERELEY WUg/L 30 FTA-MOS 19900214 METALS WERELEY WUg/L 30 FTA-MOS 19900214 METALS WERELEY WUg/L 30 FTA-MOS 19900214 METALS WERELEY WUg/L 30 FTA-MOS 19900214 PURCEARSE COMPO CHOOCONSMICE WERE WUg/L 30 FTA-MOS 19900214 PURCEARSE COMPO CHOOCONSMICE WERE WUg/L 30 FTA-MOS 19900214 PURCEARSE COMPO CHOOCONSMICE WERE WUg/L 30 FTA-MOS 19900214 PURCEARSE COMPO CHOO				_		•		
FTA-PUA 19900214 SURR COMP 1,2-DICHLOROSETMANE-OR-S X Ug/L 46.2 50 FTA-RIOG 19900214 SURR COMP 4-BROWDFLUDROSENZENE-S X Ug/L 49.5 50 FTA-RIOG 19900214 SURR COMP AITROGENZENE-S X Ug/L 49.5 50 FTA-RIOG 19900214 SURR COMP NITROGENZENE-S X Ug/L 49.5 50 FTA-RIOG 19900214 SURR COMP NITROGENZENE-S X Ug/L 49.5 50 FTA-RIOG 19900214 SURR COMP TERPHENTI-BIG X Ug/L 26.8 50 FTA-RIOG 19900214 SURR COMP TERPHENTI-BIG X Ug/L 26.8 50 FTA-RIOG 19900214 SURR COMP PRENOL-G6-S X Ug/L 26.9 100 FTA-RIOG 19900214 SURR COMP 2-FLUDROPHENDL-B-S X Ug/L 26.9 100 FTA-RIOG 19900214 SURR COMP 2-FLUDROPHENDL-B-S X Ug/L 26.9 100 FTA-RIOG 19900214 SURR COMP 2-FLUDROPHENDL-B-S X Ug/L 26.9 100 FTA-RIOG 19900214 SURR COMP 2-FLUDROPHENDL-B-S X Ug/L 26.9 100 FTA-RIOG 19900214 SURR COMP 2-FLUDROPHENDL-B-S X Ug/L 48 100.1 FTA-RIOS 19900214 PHYSICAL TEMPERATURE DEPTA-RIOS 19900214 PHYSICAL TEMPERATURE DEPTA-RIOS 19900214 PHYSICAL TEMPERATURE Ug/L 30 30 30 FTA-RIOS 19900214 METALS AITHON Ug/L 30 30 FTA-RIOS 19900214 METALS AITHON Ug/L 30 30 FTA-RIOS 19900214 METALS BERVILLUM Ug/L 30 30 FTA-RIOS 19900214 METALS CHOPULM Ug/L 30 30 FTA-RIOS 19900214 METALS UG/DIL 30 10 FTA-RIOS 19900214 METALS UG/DIL 30 10 FTA-RIOS 19900214 METALS UG/DIL 30 10 FTA-RIOS 19900214 METALS UG/DIL 30 30 30 FTA-RIOS 19900214 METALS UG/DIL 30 30 30 FTA-RIOS 19900214 METALS		-						
FTA-MOA 19900214 SURR COMP 4-BROWNEDGEWEERS 3 Ug/L 40.5 50 FTA-MOA 19900214 SURR COMP 4-BROWNEDGEWEERS 3 Ug/L 18.3 50 FTA-MOA 19900214 SURR COMP 2-FLUOROSTIPIEMT-3 X Ug/L 24.4 50 FTA-MOA 19900214 SURR COMP 2-FLUOROSTIPIEMT-3 X Ug/L 26.8 50 FTA-MOA 19900214 SURR COMP 7-FLUOROSTIPIEMT-3 X Ug/L 26.8 50 FTA-MOA 19900214 SURR COMP 7-FLUOROSTIPIEMT-3 X Ug/L 26.8 50 FTA-MOA 19900214 SURR COMP 7-FLUOROSTIPIEMT-3 X Ug/L 26.8 50 FTA-MOA 19900214 SURR COMP 7-FLUOROSTIPIEMT-3 X Ug/L 26.8 50 FTA-MOA 19900214 SURR COMP 7-FLOROSTIPIEMT-3 X Ug/L 26.9 100 FTA-MOA 19900214 SURR COMP 7-FLOROSTIPIEMT-3 X Ug/L 26.9 100 FTA-MOA 19900214 SURR COMP 7-FLOROSTIPIEMT-3 X Ug/L 26.9 100 FTA-MOA 19900214 SURR COMP 7-FLOROSTIPIEMT-3 X Ug/L 26.9 100 FTA-MOA 19900214 SURR COMP 7-FLOROSTIPIEMT-3 X Ug/L 26.9 100 FTA-MOA 19900214 SURR COMP 7-FLOROSTIPIEMT-3 X Ug/L 26.9 100 FTA-MOA 19900214 PHYSICAL COMDUCTIVITY Ug/L 26.9 100 FTA-MOA 19900214 PHYSICAL TEMPERATURE Ug/L 30 30 FTA-MOA 19900214 METALS ASSENC Ug/L 3 1 1 FTA-MOA 19900214 METALS CAMPIUM Ug/L 3 30 FTA-MOA 19900214 METALS CAMPIUM Ug/L 3 30 FTA-MOA 19900214 METALS CAMPIUM Ug/L 3 30 FTA-MOA 19900214 METALS UGANOMER Ug/L 3 30 FTA-MOA 19900214 METALS UGANOMER Ug/L 3 30 FTA-MOA 19900214 METALS UGANOMER Ug/L 3 30 FTA-MOA 19900214 METALS UGANOMER Ug/L 3 2.8 FTA-MOA 19900214 METALS UGANOMER Ug/L 3 2.8 FTA-MOA 19900214 METALS UGANOMER Ug/L 3 2.8 FTA-MOA 19900214 METALS UGANOMER Ug/L 3 2.8 FTA-MOA 19900214 METALS UGANOMER Ug/L 3 2.8 FTA-MOA 19900214 METALS UGANOMER UGAN		–						
FTA-NO4 19900214 SURR COMP 4-BROWLEVENESS X Ug/L 4,0.5 50 FTA-NO4 19900214 SURR COMP 2-FLUOROSE MITEMETS X Ug/L 24,4 50 FTA-NO4 19900214 SURR COMP 2-FLUOROSE MITEMETS X Ug/L 24,4 50 FTA-NO4 19900214 SURR COMP 2-FLUOROSE MITEMETS X Ug/L 26,8 50 FTA-NO4 19900214 SURR COMP PHENOL-05-3 X Ug/L 26,8 100 FTA-NO4 19900214 SURR COMP PHENOL-05-3 X Ug/L 26,9 100 FTA-NO4 19900214 SURR COMP PHENOL-05-3 X Ug/L 26,9 100 FTA-NO4 19900214 SURR COMP PHENOL-05-3 X Ug/L 26,9 100 FTA-NO4 19900214 SURR COMP PHENOL-05-3 X Ug/L 48 100.1 FTA-NO5 19900214 BASE/KEUTRAL EX 1,2-01PHENTLYNDRAZIME Ug/L 10 10 FTA-NO5 19900214 PHYSICAL CONDUCTIVITY Umbos 42 0 FTA-NO5 19900214 PHYSICAL TEMPERATURE Ug/L 30 30 30 FTA-NO5 19900214 METALS ANTIMONY Ug/L 30 30 30 FTA-NO5 19900214 METALS BENTLITUM Ug/L 1 1 1 FTA-NO5 19900214 METALS BENTLITUM Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 1 1 FTA-NO5 19900214 METALS URROWING Ug/L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FTA-404	19900214						
FTA-MO4 19900214 SURR COMP	FTA-MO4	19900214	SURR COMP	=				
FT1-NO4 19900214 SURR COMP 2-FLUOROSIPHENT-S X LIJ/L 26.8 50 FT3-NO4 19900214 SURR COMP PRENCL-06-S X LIJ/L 26.9 100 FT3-NO4 19900214 SURR COMP PRENCL-06-S X LIJ/L 26.9 100 FT3-NO4 19900214 SURR COMP 2-FLUOROPHENDL S X LIJ/L 48 100.1 FT3-NO4 19900214 SURR COMP 2-FLUOROPHENDL S X LIJ/L 60.8 100 FT3-NO4 19900214 SURR COMP 2-FLUOROPHENDL S X LIJ/L 60.8 100 FT3-NO5 19900214 PRISICAL CONDUCTIVITY LIMPOS 42 0 10 10 FT3-NO5 19900214 PRISICAL TEMPERATURE day C 14 0 FT3-NO5 19900214 PRISICAL TEMPERATURE day C 14 0 FT3-NO5 19900214 METALS ARTINDAY LIJ/L 30 30 30 FT3-NO5 19900214 METALS BERTLITIM LIJ/L 3 1 1 FT3-NO5 19900214 METALS BERTLITIM LIJ/L 3 1 1 1 FT3-NO5 19900214 METALS CAMPIUM LIJ/L 3 1 1 1 FT3-NO5 19900214 METALS CAMPIUM LIJ/L 3 1 1 1 FT3-NO5 19900214 METALS CAMPIUM LIJ/L 3 1 1 1 FT3-NO5 19900214 METALS CAMPIUM LIJ/L 3 1 1 1 1 FT3-NO5 19900214 METALS CAMPIUM LIJ/L 3 1 1 1 1 FT3-NO5 19900214 METALS CAMPIUM LIJ/L 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FTA - HO4	19900214	SURR COMP	-				
FTA-NO4	FT#-MO4	19900214	SURR COMP	2-FLUORCE IPHENTL-S				
FTA-M04 19900214 SURR COMP PHENOL-06-S X Ug/L 48 100.1 FTA-M04 19900214 SURR COMP 2-F-LUOROPHENDL SX Ug/L 48 100.1 FTA-M04 19900214 SURR COMP 2-F-LUOROPHENDL SX Ug/L 48 100.1 FTA-M05 19900214 BASE-MEUTRAL EX 1,2-01PHENTLHYDRAZINE Ug/L 10 10 FTA-M05 19900214 PHYSICAL TEMPERATURE EMB P		19900214	SURR COMP	TERPHENYL-914				
FTA-M04			SURR COMP	PHENOL-06-S				
FTA-MOS 19900214 PHYSICAL CONDUCTIVITY Umbos 42 0 FTA-MOS 19900214 PHYSICAL CONDUCTIVITY Umbos 42 0 FTA-MOS 19900214 PHYSICAL CONDUCTIVITY Umbos 42 0 FTA-MOS 19900214 PHYSICAL CONDUCTIVITY Umbos 42 0 FTA-MOS 19900214 PHYSICAL TEMPERATINE Ug/L 30 30 30 FTA-MOS 19900214 METALS ARTHONY Ug/L 1 1 FTA-MOS 19900214 METALS BERTLIUM Ug/L 1 1 FTA-MOS 19900214 METALS BERTLIUM Ug/L 1 1 FTA-MOS 19900214 METALS COMPOUNT Ug/L 1 1 FTA-MOS 19900214 METALS COMPOUNT Ug/L 1 10 10 FTA-MOS 19900214 METALS COMPOUNT Ug/L 1 10 10 FTA-MOS 19900214 METALS COMPOUNT Ug/L 2 2 2 FTA-MOS 19900214 METALS UG/L 1 1 1 FTA-MOS 19900214 METALS UG/L 1 1 1 FTA-MOS 19900214 METALS UG/L 2 2 2 FTA-MOS 19900214 METALS UG/L 2 2 2 FTA-MOS 19900214 METALS UG/L 2 2 2 FTA-MOS 19900214 METALS UG/L 2 2 2 FTA-MOS 19900214 METALS UG/L 2 2 2 FTA-MOS 19900214 METALS SELETUM Ug/L 2 2 2 FTA-MOS 19900214 METALS SELETUM Ug/L 2 2 2 FTA-MOS 19900214 METALS SELETUM Ug/L 2 2 2 FTA-MOS 19900214 METALS SELETUM Ug/L 2 2 2 FTA-MOS 19900214 METALS SELETUM Ug/L 30 10 FTA-MOS 19900214 METALS UG/L 3 2.8 15 FTA-MOS 19900214 METALS UG/L 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3								100.1
FTA-MOS 19900214 PHYSICAL COMDUCTIVITY UMBOS 42 0 FTA-MOS 19900214 PHYSICAL EMPERATINE deg C 114 0 FTA-MOS 19900214 PHYSICAL TEMPERATINE deg C 114 0 FTA-MOS 19900214 METALS ANTINCHY UMBOS 42 0 FTA-MOS 19900214 METALS ANTINCHY UMBOS 42 0 FTA-MOS 19900214 METALS ANTINCHY UMBOS 42 0 FTA-MOS 19900214 METALS ANTINCHY UMBOS 42 0 FTA-MOS 19900214 METALS ANTINCHY UMBOS 42 1 1 FTA-MOS 19900214 METALS BERYLLIUM UMBOS 1 FTA-MOS 19900214 METALS CAMPIUM UMBOS 1 FTA-MOS 19900214 METALS COMPER UMBOS 1 FTA-MOS 19900214 METALS COMPER UMBOS 1 FTA-MOS 19900214 METALS UMBOS 1 FTA-MOS 19900214 METALS MERCURY UMBOS 1 FTA-MOS 19900214 METALS MERCURY UMBOS 1 FTA-MOS 19900214 METALS SELEMIUM UMBOS 2 FTA-MOS 19900214 METALS SELEMIUM UMBOS 2 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 METALS SELEMIUM UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO ACTIONISMIC UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO BEACHER UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO BEACHER UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO BEACHER UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO BEACHER UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO CHLOROFINME UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO CHLOROFINME UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO CHLOROFINME UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO CHLOROFINME UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO DICHLOROFINME UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO DICHLOROFINME UMBOS 3 FTA-MOS 19900214 PURCEASLE COMPO DICHLOROFINME UMBOS				2,4,6-TR!SROMOPHENOL-B4-S	% ug/L		8.06	100
FTA-MOS				1,2-DIPHENYLHYDRAZINE	ug/L	<	10	10
FTA-MOS 19900214 METALS ANTINCHUM 19/L < 30 30 30 30 30 30 30 30 30 30 30 30 30								
FTA-MOS 19900214 METALS ARSENIC U9/L < 1 1 1 FTA-MOS 19900214 METALS BERTLISM U9/L < 1 1 1 FTA-MOS 19900214 METALS BERTLISM U9/L < 1 1 1 FTA-MOS 19900214 METALS BERTLISM U9/L < 5 5 FTA-MOS 19900214 METALS CADMIUM U9/L < 10 10 FTA-MOS 19900214 METALS CHADMIUM U9/L < 10 10 FTA-MOS 19900214 METALS CHADMIUM U9/L < 30 30 30 FTA-MOS 19900214 METALS CHADMIUM U9/L < 30 30 30 FTA-MOS 19900214 METALS CHADMIUM U9/L < 30 30 30 FTA-MOS 19900214 METALS MERCARY U9/L < 32 2 FTA-MOS 19900214 METALS MICKEL U9/L 32.8 15 FTA-MOS 19900214 METALS SELBITUM U9/L < 10 10 FTA-MOS 19900214 METALS SELBITUM U9/L < 10 10 FTA-MOS 19900214 METALS SILVER U9/L < 10 10 FTA-MOS 19900214 METALS SILVER U9/L < 10 10 FTA-MOS 19900214 METALS SILVER U9/L < 10 10 FTA-MOS 19900214 METALS SILVER U9/L < 10 10 FTA-MOS 19900214 METALS U9/L < 10 10 FTA-MOS 19900214 METALS U9/L < 10 10 FTA-MOS 19900214 METALS U9/L < 10 10 FTA-MOS 19900214 METALS U9/L < 10 10 FTA-MOS 19900214 MERBICIDES ANAL 2,4-5-T U9/L < 50 50 FTA-MOS 19900214 MERBICIDES ANAL 2,4-5-T U9/L < 50 50 FTA-MOS 19900214 MERBICIDES ANAL 2,4-5-T U9/L < 50 50 FTA-MOS 19900214 PURGEABLE COMPO ACRUCHMI METEL U9/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO BROWDETHINE U9/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO BROWDETHINE U9/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO BROWDETHINE U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO BROWDETHINE U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CARBON TETRALHOLORE U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CARBON TETRALHOLORE U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLORORERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLORORERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLORORERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLORORERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLORORERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLORORERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLORORERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLORORERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLORORERZEME U9/L < 5		_						
FTA-MOS 19900214 METALS BERTLISM U9/L < 1 1 1 FTA-MOS 19900214 METALS CADMIUM U9/L < 5 5 FTA-MUS 19900214 METALS CADMIUM U9/L < 10 10 FTA-MOS 19900214 METALS CHROMIUM U9/L < 10 10 FTA-MOS 19900214 METALS CHROMIUM U9/L < 10 10 FTA-MOS 19900214 METALS COMPER U9/L < 10 10 FTA-MOS 19900214 METALS LEAD U9/L < 2 2 FTA-MOS 19900214 METALS UP/L < 2 2 FTA-MOS 19900214 METALS UP/L < 2 2 FTA-MOS 19900214 METALS UP/L < 2 2 FTA-MOS 19900214 METALS NICKEL U9/L < 2 2 FTA-MOS 19900214 METALS SELENIUM U9/L < 2 2 FTA-MOS 19900214 METALS SELENIUM U9/L < 10 10 FTA-MOS 19900214 METALS SELENIUM U9/L < 10 10 FTA-MOS 19900214 METALS SILVER U9/L < 10 10 FTA-MOS 19900214 METALS SILVER U9/L < 10 10 FTA-MOS 19900214 METALS SILVER U9/L < 10 10 FTA-MOS 19900214 METALS U9/L < 10 10 FTA-MOS 19900214 METALS U9/L < 10 10 FTA-MOS 19900214 METALS U9/L < 10 10 FTA-MOS 19900214 METALS U9/L < 10 10 FTA-MOS 19900214 MERICIDES ANAL 2,4-5-T U9/L < 50 50 FTA-MOS 19900214 MERICIDES ANAL 2,4-5-T U9/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4-5-T U9/L < 50 50 FTA-MOS 19900214 PURGEASLE COMPO ACROCETIM U9/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACROCETIM U9/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACROCETIM U9/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACROCETIM U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO ACROCETIM U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROSTRIME U9/L < 5 5 FTA-MOS 19900214 PURGEASLE CO					-			
FTA-NOS					-			
FTA-MUS 19900214 METALS CHOMPLM Ug/L < 10 10 FTA-MUS 19900214 METALS CHOMPLM Ug/L < 10 10 FTA-MUS 19900214 METALS COMPC Ug/L < 10 10 FTA-MUS 19900214 METALS COMPC Ug/L < 30 30 FTA-MUS 19900214 METALS LEAD Ug/L < 30 30 FTA-MUS 19900214 METALS LEAD Ug/L < 2 2 FTA-MUS 19900214 METALS MERCERY Ug/L < 2 2 FTA-MUS 19900214 METALS MERCERY Ug/L < 2 2 FTA-MUS 19900214 METALS MICKEL Ug/L < 2 2 FTA-MUS 19900214 METALS SELENTUM Ug/L < 2 2 FTA-MUS 19900214 METALS SELENTUM Ug/L < 10 10 FTA-MUS 19900214 METALS SILVER Ug/L < 10 10 FTA-MUS 19900214 METALS SILVER Ug/L < 10 10 FTA-MUS 19900214 METALS THALLTUM Ug/L < 10 10 FTA-MUS 19900214 METALS THALLTUM Ug/L < 50 50 FTA-MUS 19900214 MERRICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MUS 19900214 MERRICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MUS 19900214 MERRICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MUS 19900214 MERRICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MUS 19900214 MERRICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MUS 19900214 PURGEASLE COMPO ACROCETIM Ug/L < 10 10 FTA-MUS 19900214 PURGEASLE COMPO ACROCETIM Ug/L < 10 10 FTA-MUS 19900214 PURGEASLE COMPO ACROCETIM Ug/L < 10 10 FTA-MUS 19900214 PURGEASLE COMPO BROWNIFILE Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO BROWNIFILE Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO CARBON TETRALHORIDE Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO CHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO CHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO CHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO CHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO CHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO CHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO CHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO 1,2-DICHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO 1,2-DICHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO 1,2-DICHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO 1,2-DICHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO 1,2-DICHLOROGENERME Ug/L < 5 5 FTA-MUS 19900214 PURGEASLE COMPO 1,2-DICHLOROGENERME								
### FTA-MUS					-			
FTA-MOS 19900214 METALS LEAD Ug/L < 10 10 FTA-MOS 19900214 METALS LEAD Ug/L < 30 30 FTA-MOS 19900214 METALS HERRY Ug/L < .2 .2 FTA-MOS 19900214 METALS HERRY Ug/L < 32 .3 FTA-MOS 19900214 METALS HERRY Ug/L < 32 .3 FTA-MOS 19900214 METALS SELENTUM Ug/L < 2 .2 FTA-MOS 19900214 METALS SELENTUM Ug/L < 10 10 FTA-MOS 19900214 METALS SILVER Ug/L < 10 10 FTA-MOS 19900214 METALS SILVER Ug/L < 10 10 FTA-MOS 19900214 METALS THALLIUM Ug/L < 10 10 FTA-MOS 19900214 METALS THALLIUM Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MOS 19900214 PURGEASLE COMPO ACRYLONITRILE Ug/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO BERZERE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BERZERE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BERZERE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BERZERE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BERZERE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROBERZERE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROBERZERE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROBERZERE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROBERZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROBERZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROBERZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROBERZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROBERZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROBERZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROBERZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROBERZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROBERZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROBERZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO TI-OICHLOROBERZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO TI-OICHLOROBERZE					-			
FTA-MOS 19900214 METALS MERCARY U9/L < 2 2 2 FTA-MOS 19900214 METALS MERCARY U9/L < 2 2 2 FTA-MOS 19900214 METALS NICKEL U9/L 32.8 15 FTA-MOS 19900214 METALS NICKEL U9/L 32.8 15 FTA-MOS 19900214 METALS SELERIUM U9/L < 2 2 FTA-MOS 19900214 METALS SILVER U9/L < 10 10 FTA-MOS 19900214 METALS SILVER U9/L < 10 10 FTA-MOS 19900214 METALS TALLERM U9/L < 10 10 FTA-MOS 19900214 METALS TALLERM U9/L < 10 10 FTA-MOS 19900214 METALS TALLERM U9/L < 10 10 FTA-MOS 19900214 MERBICIDES ANAL 2,45-T U9/L < 50 50 FTA-MOS 19900214 MERBICIDES ANAL 2,45-T U9/L < 50 50 FTA-MOS 19900214 MERBICIDES ANAL 2,45-T U9/L < 50 50 FTA-MOS 19900214 MERBICIDES ANAL 2,45-T U9/L < 50 50 FTA-MOS 19900214 PURCEASLE COMPO ACROLEIN U9/L < 10 10 FTA-MOS 19900214 PURCEASLE COMPO ACROLEIN U9/L < 10 10 FTA-MOS 19900214 PURCEASLE COMPO ACROLEIN U9/L < 10 10 FTA-MOS 19900214 PURCEASLE COMPO BRIMESEM U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO BRIMESEM U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO BRIMESEM U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO CARBON TETRA/HORIDE U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO CARBON TETRA/HORIDE U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO CARBON TETRA/HORIDE U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO CARBON TETRA/HORIDE U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO CARBON TETRA/HORIDE U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO CHLORODIBREMOMETIMME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO CHLORODIBREMOMETIMME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO CHLORODIBREME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO CHLORODIBREME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO DICHLOROBENEME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO DICHLOROBENEME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO DICHLOROBENEME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO DICHLOROBENEME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO DICHLOROBENEME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO DICHLOROBENEME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO DICHLOROBENEME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE COMPO DICHLOROBENEME U9/L < 5 5 FTA-MOS 19900214 PURCEASLE					-			
FTA-MOS 19900214 METALS NECKLEY U9/L 32.8 15 FTA-MOS 19900214 METALS NICKEL U9/L 32.8 15 FTA-MOS 19900214 METALS SELEKTIM U9/L < 2 2 FTA-MOS 19900214 METALS SELEKTIM U9/L < 10 10 FTA-MOS 19900214 METALS SILVER U9/L < 10 10 FTA-MOS 19900214 METALS TRALLIZAM U9/L < 10 10 FTA-MOS 19900214 METALS TRALLIZAM U9/L < 50 50 FTA-MOS 19900214 MERBICIDES ANAL 2,4-0 U9/L < 50 50 FTA-MOS 19900214 MERBICIDES ANAL 2,4-5-T U9/L < 50 50 FTA-MOS 19900214 MERBICIDES ANAL 2,4-5-T U9/L < 50 50 FTA-MOS 19900214 MERBICIDES ANAL 2,4-5-T U9/L < 50 50 FTA-MOS 19900214 MERBICIDES ANAL 2,4-5-T U9/L < 50 50 FTA-MOS 19900214 PURGEASLE COMPO ACRUEIN U9/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACRUEIN U9/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACRUEIN U9/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO BROMONETHMIE U9/L < 15 5 FTA-MOS 19900214 PURGEASLE COMPO BROMONETHMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO BROMONETHMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CARBON TETRAJHCRIEDE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROCHTMIE U9/L < 5 5 FTA-MOS 19900214 P	FTA-HOS				-			
FTA-MOS 19900214 METALS SELENTUN UG/L 32.8 15 FTA-MOS 19900214 METALS SELENTUN UG/L < 10 10 FTA-MOS 19900214 METALS SILVER UG/L < 10 10 FTA-MOS 19900214 METALS SILVER UG/L < 10 10 FTA-MOS 19900214 METALS THALIZUM UG/L < 10 10 FTA-MOS 19900214 METALS THALIZUM UG/L < 10 10 FTA-MOS 19900214 METALS THALIZUM UG/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4-0 UG/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4-5-T UG/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-TP (SILVEX) UG/L < 50 50 FTA-MOS 19900214 PURGEASLE COMPO ACRYLONITELE UG/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACRYLONITELE UG/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO BRIMZEME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO BRIMZEME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO BRIMZEME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO BRIMZEME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CARBON TETRAJHORIDE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERISME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBER	FTA-MOS	19900214	METALS					
FTA-MOS 19900214 METALS SELENTUM Ug/L < 10 10 FTA-MOS 19900214 METALS STALLERN Ug/L < 10 10 FTA-MOS 19900214 METALS THALLERN Ug/L < 10 10 FTA-MOS 19900214 METALS THALLERN Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4-5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4-5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4-5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4-5-T (SILVEX) Ug/L < 50 50 FTA-MOS 19900214 PURGEASLE COMPO ACROCIETIN Ug/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACRYLONITRILE Ug/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO BROWGOWN Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BROWGOWN Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BROWGOWN Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BROWGOWN Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CARBON TETRA-HLORIDE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CARBON TETRA-HLORIDE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROGIBREME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROGIBREME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROGIBREME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROGIBREME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROGIBREME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROGIBREME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROGIBREME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROGIBREME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROGIBREME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROGENEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROGENEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROGENEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROGENEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROGENEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROGENEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROGENEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROGENEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROGENEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROGENEME Ug/L < 5 5 5 FTA-MOS 19900214				HICKEL	-			
FTA-MOS 19900214 METALS THALLEUM UG/L < 10 10 10 FTA-MOS 19900214 HERBICIDES ANAL 2,4-0 UG/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4-5-T UG/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4-5-T UG/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4-5-T UG/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4-5-TP (SILVEX) UG/L < 50 50 FTA-MOS 19900214 PURGEASLE COMPO ACROLEIM UG/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACROLEIM UG/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO BRIZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BRICHOFORM UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BRICHOFORM UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BRICHOFORM UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CARBON TETRAJHORIDE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOXOBENZENE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOXOBENZENE UG/L < 5 5 5			METALS	SELENTUM		<		
FTA-MOS 19900214 MERBICIDES ANAL 2.4-0 Ug/L 7.75 5 FTA-MOS 19900214 HERBICIDES ANAL 2.4-0 Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2.4-5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2.4-5-T Ug/L < 50 50 FTA-MOS 19900214 PURGEASLE COMPO ACROLEIN Ug/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACRYLONITRILE Ug/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO ACRYLONITRILE Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO BRCMOFORM Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO BRCMOFORM Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO BRCMOFORM Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO BRCMOFORM Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CARBON TETRAJHORIDE Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CARBON TETRAJHORIDE Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBERZEME Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COM					ug/L	<	10	10
FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-TP (SILVEX) Ug/L < 50 50 FTA-MOS 19900214 PURGEASLE COMPO ACROLEIN Ug/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACRYLOMITMILE Ug/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO BRIZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BROMOREN Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BROMOREN Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BROMOREN Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BROMORENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLORODIBROMORENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLORODIBROMORENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLORODIBROMORENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLORODIBROMORENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLORODIBROMORENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLORODIBROMORENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLORODIBROMORENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLORODIBROMORENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLORODENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLORODENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROGENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHOROGROMOMENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHOROGROMOMENSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHOROGROSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHOROGROSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROGROSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROGROSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROGROSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROGROSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROGROSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROGROSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROGROSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO 1,2-DICHLOROGROSE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEA					ug/L	<		19
FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-T Ug/L < 50 50 FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-TP (SILVEX) Ug/L < 50 50 FTA-MOS 19900214 PURGEASLE COMPO ACROLEIM Ug/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACRYLONITRILE Ug/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO BROMACHIMILE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO BROMACHIMILE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO BROMACHIMILE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO BROMACHIMILE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CARBON TETRACHLORIDE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROGENZENE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROGENEMBE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROGENEMBE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROGENEMBE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROGENEMBE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROGENEMBE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROGENEMBE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROGENEMBE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROGENEMBE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROGENEMBE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEMBE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEMBE Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROGENEEME Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROG					ug/L			
FTA-MOS 19900214 HERBICIDES ANAL 2,4,5-TP (SILVEX) U9/L < 50 50 50 50 FTA-MOS 19900214 PURGEABLE COMPO ACRYLONITRILE U9/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO BRAZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO BRAZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO BRAZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO BRAZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO BRAZEME U9/L < 10 10 77A-MOS 19900214 PURGEABLE COMPO CARBON TETRAJHLORIDE U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CARBON TETRAJHLORIDE U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME U9/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME U9/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO CHLOROBERZEME U9/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERZEME U9/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO DICHLOROBERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROBERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,3-01CHLOROBERZEME U9/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,3-01CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,4-01CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,1-01CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROBERZEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROPROMEME U9/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROPROMEME U9/L < 5								
FTA-MOS 19900214 PURGEASLE COMPO ACRYLONITRILE UG/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO ACRYLONITRILE UG/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO BRUNDERM UG/L < 5 5 FTA-MOS 19900214 PURGEASLE COMPO BRUNDERM UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO BRUNDETHAME UG/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO CARBON TETRACHURIDE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSIBRUMOMETMANE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSIBRUMOMETMANE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSIBRUMOMETMANE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSIBRUMOMETMANE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSIBRUMOMETMANE UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSITMAME UG/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSITMAME UG/L < 10 10 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSITMAME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO CHLOROSITMAME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITMAME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITMAME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITMAME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 PURGEASLE COMPO DICHLOROSITEME UG/L < 5 5 5 FTA-MOS 19900214 P								
FTA-MO5 19900214 PURGEABLE COMPO BENZEME U9/L < 10 10 10 FTA-MO5 19900214 PURGEABLE COMPO BENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO BROMOFORM U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO BROMOFORM U9/L < 10 10 10 77A-MO5 19900214 PURGEABLE COMPO CARBON TETRACHLORIDE U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO CHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO CHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO CHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO CHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO 2-CHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO CHLOROBENZEME U9/L < 10 10 FTA-MO5 19900214 PURGEABLE COMPO CHLOROBENZEME U9/L < 10 10 FTA-MO5 19900214 PURGEABLE COMPO CHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMPO DICHLOROBENZEME U9/L < 5 5 5 FTA-MO5 19900214 PURGEABLE COMP			- · · · · · · · · · · · · · · · · · · ·		_			
### FTA-MO5 19900214 PURGEABLE COMPO BEMZEME U9/L < 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					-			
### FTA-MO5 19900214 PURGEABLE COMPO BROMOMETHAME UG/L < 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5								
### FTA-MO5 19900214 PURGEABLE COMPO BROMOWETMANE Ug/L < 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			-					
FTA-MO5								
### FTA-MOS 19900214 PURGEABLE COMPO CHLORODIBREMOMETHAME UG/L < 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							10,	
STA-MOS 19900214 PURGEABLE COMPO CHLORODIBRIMOMETHAME Ug/L < 5 5 5 5 5 5 5 5 5		19900214						
### 77A-MOS 19900214 PURGEABLE COMPO 2-CHLOROETHYLLINYL ETHER Ug/L < 5 5 5 FTA-MOS 19900214 PURGEABLE COMPO CHLOROETHME Ug/L < 10 10 10 FTA-MOS 19900214 PURGEABLE COMPO CHLOROETHME Ug/L < 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5								
FTA-MOS 19900214 PURGEABLE COMPO CHLOROFCHM UG/L < 5 5 5 5 5 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					ug/L	<	5	5
FTA-MOS 19900214 PURGEABLE COMPO CHLOROMETHANE UG/L < 10 10 FTA-MOS 19900214 PURGEABLE COMPO DICHLO/OBROMOMETHANE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBENZEWE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,3-DICHLOROBENZEWE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,4-DICHLOROBENZEWE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,4-DICHLOROBENZEWE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,1-DICHLOROBENZEWE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,1-DICHLOROETHANE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROETHANE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,1-DICHLOROETHANE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROETHANE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROETHANE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROETHANE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROPROMANE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CIS-1,3-DICHLOROPROMANE UG/L < 5 5					ug/L	<		
### FTA-MOS 19900214 PURGEABLE COMPO DICHLOY/OBROMOME NAME Ug/L < 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5								
FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBENZENE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,3-DICHLOROBENZENE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,4-DICHLOROBENZENE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,4-DICHLOROBENZENE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,1-DICHLOROBENZENE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBENENE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,1-DICHLOROBENENE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO TRANS-1,2-DICHLOROBENENE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROBENENE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROPROMANE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CIS-1,3-DICHLOROPROMANE UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CIS-1,3-DICHLOROPROMANE UG/L < 5 5								
FTA-M05 19900214 PURGEABLE COMPO 1,3-01CHLOROBENZENE Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,4-01CHLOROBENZENE Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,1-01CHLOROBENZENE Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,2-01CHLOROBENAME Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,2-01CHLOROBENEME Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,1-01CHLOROBENEME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO TRANS-1,2-01CHLOROBENEME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO TRANS-1,2-01CHLOROBENEME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,2-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 5 FTA-M05 PURG								
FTA-MOS 19900214 PURGEABLE COMPO 1,4-01CHLOROBENZEME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,1-01CHLOROBENZEME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROBENAME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROBENAME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,1-01CHLOROBENEME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO TRANS-1,2-01CHLOROBENEME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-01CHLOROPROMAME UG/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROMAME UG/L < 5 5				. •				
FTA-M05 19900214 PURGEABLE COMPO 1,1-01CHLOROETHAME UG/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,2-01CHLOROETHAME UG/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,1-01CHLOROETHEME UG/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,1-01CHLOROETHEME UG/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO TRAMS-1,2-01CHLOROETHEME UG/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,2-01CHLOROPROPAME UG/L < 5 5 FTA-M05 19900214 FURGEABLE COMPO CIS-1,3-01CHLOROPROPAME UG/L < 5 5								
FTA-M05 19900214 PURGEABLE COMPO 1,2-DICHLOROETHAME Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,1-DICHLOROETHAME Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO TRANS-1,2-DICHLOROETHAME Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO TRANS-1,2-DICHLOROPROMAME Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-DICHLOROPROMAME Ug/L < 5 5							2	
FTA-M05 19900214 PURGEABLE COMPO 1,1-01CHLOROETHENE Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO TRANS-1,2-01CHLOROETHENE Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO 1,2-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 19900214 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE COMPO CIS-1,3-01CHLOROPROPAME Ug/L < 5 5 FTA-M05 PURGEABLE Ug/L < 5 5 FTA-M05 PURGEABLE UG/L < 5 FTA-M05 PURGEABLE UG/L < 5 FTA-M05 PURGEABLE UG/L < 5 FTA-M05 PURGEABLE UG/L < 5 FTA-M05 PURGEABLE UG/L < 5 FTA-M05 PURGEABLE UG/L < 5 FTA-M05 PURGEABLE UG/								
FTA-MOS 19900214 PURGEABLE COMPO TRANS-1,2-DICHLOROFTHENE Ug/L < 5 5 FTA-MOS 19900214 PURGEABLE COMPO 1,2-DICHLOROPROMAME Ug/L < 5 5 FTA-MOS 19900214 FURGEABLE COMPO CIS-1,3-DICHLOROPROMEWE Ug/L < 5 5							,	
FTA-MOS 19900214 PUNCEABLE COMPO 1,2-DICHLOROPROMAME UG/L < 5 5 FTA-MOS 19900214 FUNCEABLE COMPO CIS-1,3-DICHLOROPROMEWE UG/L < 5 5							,	,
FTA-MOS 19900214 FURGEABLE COMPO CIS-1,3-DICHLOROPROPERE Ug/L 4 5								ś
FTA MOS ADDANAS DIRECTOR DE CARACTER DE LA CONTRACTOR DE CARACTER								
	FTA-MOS	19900214	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPERE		<		

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MOS	19900214	PURGEABLE COMPO	ETHYLBENZENE	ug/L		5	5
FTA-M05	19900214	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-HO5	19900214	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	nā/r	<	5	5
FTA-MOS	19900214	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5
FTA-HOS	19900214 19900214	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
FTA-HOS FTA-HOS	19900214	PURGEABLE COMPO PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5
FTA-HOS	19900214	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE TRICHLOROETHENE	ug/L	< <	5 5	5 5
FTA-HOS	15900214	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L ug/L	` `	10	10
FTA-MOS	19900214	PURGEABLE COMPC	VIRYL CHLORIDE	ug/L		10	10
FTA - MO5	19900214	BASE/NEUTRAL EX	ACENAPHTHENE	ug/L	<	10	10
FTA-MO5	19900314	BASE/NEUTRAL EX	ACENAPHTHYLENE	ug/L	<	10	10
FTA-MC5	19900214	BARE/HEUTRAL EX	ANTHRACENE	ug/L	<	10	10
FTA-MO5	19900214	BASE/NEUTRAL EX	BENZIDINE	ug/L	<	50	50
FTA-HJ5	19900214	BASE/NEUTRAL EX	BENZO(a)ANTHRACENE	ug/L	<	10	10
FTA-HOS	19900214	BASE/NEUTRAL EX	BENZO(b) FLUORANTHENE	ug/L	<	10	10
FTA-MO5 FTA-MO5	19900214 19900214	BASE/WEUTRAL EX BASE/WEUTRAL EX	BENZO(k) FLUORANTHENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	BENZO(a)PYRENE BENZO(g,h,i)PERYLENE	ug/L ug/L	< <	10 10	10 10
FTA-MOS	19900214	BASE/NEUTRAL EX	BUTYLBENZYLPHTHALATE	ug/L	~	10	10
FTA-MOS	19900214	SASE/NEUTRAL EX	4-BROMOPHENYL PHENYL ETHER	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	BIS(2-CHLOROETHYL)ETHER	ug/L	4	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	BIS(2-CHLOROETMYOXY)METHANE	ug/L	<	10	10
FTA-HOS	19900214	BASE/NEUTRAL EX	BIS(2-ETHYLMEXYL)PHTHALATE	ug/L		46	10
FTA-MOS	19900214	BASE/NEUTRAL EX	BIS(2-CHLGROISOPROPYL)ETHER	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	2-CHLORONAPHTHALENE	ug/L	<	10	10
FTA-MO5 FTA-MO5	19900214 19900214	BASE/NEUTRAL EX	4-CHLOROPHENYL PHENYL ETHER	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX BASE/HEUTRAL EX	CHRYSENE D!BENZO(a,h)ANTHRACENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/HEUTRAL EX	DI-N-SUTYLPHTHALATE	ug/L ug/L	< <	10 10	10 10
FTA-NOS	19900214	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	` `	10	10
FTA-HOS	19900214	PURGEABLE COMPO	1.3-DICHLOROBENZENE	ug/L	· .	10	10
FTA-MOS	19900214	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	3,3-DICHLOROBENZIDINE	ug/L	<	20	20
FTA-405	19900214	BASE/NEUTRAL EX	DIETHYL PHTHALATE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	DIMETHYL PHTHALATE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	2,4-DINITROTOLUENE	ug/L	<	10	10
FTA-MOS FTA-MOS	19900214 19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	2,6-DINITROLOLUENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/WEUTRAL EX	DI-M-OCTYLPHTHALATE DIOXIN(2,3,7,8-TCDD)	ug/L	NEG	10 0	10
FTA-HOS	19900214	BASE/NEUTRAL EX	FLUORANTHENE	ug/L ug/L	MEU <	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	FLUORENS	ug/L		10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	HEXACHL OROBENZENE	Lg/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	HEXACHLOROBUTAD I ENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	HEXACHLOROCYCLOPENTAD I ENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	HEXACHLOROETHANE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	INDENG(1,2,3-c,d)PYRENE	ug/L	<	10	10
FTA-MOS FTA-MOS	19900214 19900214	BASE/NEUTRAL EX	ISOPHORONE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	NAPHTHALENE NITROBENZENE	ug/L	< <	19 10	10 10
FTA-MOS	19900214	BASE/NEUTRAL EX	N-HITROSO-DI-METHYLAMINE	ug/L ug/L	` `	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	N-HITROSO-DI-PHENYLAMINE	ug/L		10	10
FTA-HOS	19900214	BASE/NEUTRAL EX	N-NITPOSC-DI-N-PROPYLAMINE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	PHENANTHRENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	PYRENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	1,2,4-TRICHLOROBENZENE	ug/L	<	10	10
FTA-HOS FTA-HOS	19900214 19900214	ACID EXTRACT ACID EXTRACT	4 - CHLORO-3 - METHYL PHENOL	ug/L	<	10	10
FTA-HUS	19900214	ACID EXTRACT	2,4-BICHLOROPHENOL	ug/L	«	10	10
FTA-MOS	19900214	ACID EXTRACT	2,4-DIMETHYLPHENOL 2,4-DIMITROPHENOL	ug/L ug/L	< <	10 50	10 50
FTA-MOS	19900214	ACID EXTRACT	2-METHYL-4,6-DINITROPHEHOL	ug/L	ì	50	50
FTA-HOS	19900214	ACID EXTRACT	2-NITROPHENOL	ug/L	` `	10	10
FTA-MOS	19900214	ACID EXTRACT	4-NITROPHENOL	ug/L	<	50	50
FTA-MOS	19900214	ACID EXTRACT	PEHTACHLOROPHENOL	ug/L	,	50	50
FTA-HOS	19900214	ACID EXTRACT	PHENOL	ug/L	<	10	10
FTA-MOS	19900214	ACID EXTRACT	2,4,5-TRICHLOROPHENOL	ug/L	<	10	10
FTA-MOS FTA-MOS	19900214 19900214	PESTICIDES	ALDRIN	ug/L	<	.04	.04
FTA-MOS	19900214	PESTICIDES PESTICIDES	a-8HC	ug/L	٠	.03	.03
		F 21 1 C 10 C 2	P-8HC	ug/L	<	.06	.06

WELL A	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MOS	19900214	PESTICIDES	g-BHC	ug/L		.09	.09
FTA-MOS	19900214	PESTICIDES	d-BHC	ug/L	~	.04	.04
FTA-MOS	19900214	PESTICIDES	CHLORDANE	ug/L	<	.14	. 14
FTA-MOS FTA-MOS	19900214 19900214	PESTICIDES	4,4*-500	ug/L	<	.11	.11
FTA-NO5	19900214 19900214	PESTICIDES	4,4'-DDE	ug/L	<	.04	.04
FTA-MOS	19900214	PESTICIDES PESTICIDES	4,4*-DDT	ug/L	<	. 12	. 12
FTA-MUS	19900214	PESTICIDES	DIELDRIN	ug/L	<	. 02	.02
FTA-405	19900214	PESTICIDES	ENDOSULFAN I ENDOSULFAN II	ug/L	•	. 14	. 14
FTA-M05	19900214	PESTICIDES	ENDOSULFAN SULFATE	ug/L ug/L	< <	.04 .66	.04
FTA-MOS	19900214	PESTICIDES	ENDRIN	ug/L	` `	.06	.66 .06
FTA-HOS	19900214	PESTICIDES	ENDRIN ALDEHYDE	ug/L		.23	. 23
FTA-HOS	19900214	PESTICIDES	HEPTACHLOR	ug/L	<	.03	.03
FTA-MOS FTA-KOS	19900214 19900214	PESTICIDES	HEPTACHLOR EPOXIDE	ug/L	<	.83	. 83
FTA-HOS	19900214	PESTICIDES	METHOXYCHLOR	ug/L	<	1.8	1.8
FTA-HOS	19900214	PCB	PC8-1016	ug/L	<	.1	.1
FTA-HOS	19900214	PC8 PCB	PC8-1221	ug/L	<	.1	.1
FTA-MOS	19900214	PCB	PCB-1232	ug/L	<	.1	. 1
FTA-HOS	19900214	PCB	PC8-1242 PC8-1248	ug/L	<	.1	.1
FTA-HOS	19900214	PCB	PC8-1254	ug/L	<	.1	.1
FTA-MOS	19900214	PCB	PCB-1260	ug/L ug/L	< <	.1	.1
FTA-MO5	19900214	PEST!CIDES	TOXAPHENE	ug/L	` `	.1 2.4	2.1
FTA-MOS	19900214	TENTATIVELY COM	DI-TERT-SUTYL PHENOL	ug/L	•	14	2.4 -999
FTA-MOS	19900214	TENTATIVELY COM	UNIDENTIFIED ALKENE	ug/L		24	-999
FTA-HOS	19900214	SURR COMP	1,2-DICHLOROETHANE-04-S	% ug/L		45.7	50
FTA-MOS FTA-MG5	19900214	SURR COMP	TOLUENE-D8-S	% ug/L		48.4	50
FTA-MOS	19900214 19900214	SURR COMP	4-BROMOFLUORGBENZENE-S	¥ ug/L		46.4	50
FTA-HOS	19900214	SURR COMP SURR COMP	NITROBENZENE-D5-S	% ug/L		20.9	50
FTA-HOS	19900214	SURR COMP	2-FLUORCEIPHENYL-S	% ug/L		22.6	50
FTA-MOS	19960214	SURR COMP	TERPHENYL-014 PHENOL-06-S	% ug/L		31.3	50
FTA-MOS	19900214	SURR COMP	2-FLUOROPHENOL-S	% ug/L % ug/L		30.1	100
FTA-HOS	19900214	SURR COMP	2,4,6-TRIBROMOPHENOL-D4-S	X ug/L		45.8 56.9	100.1 100
FTA-MOS	19900214	BASE/NEUTRAL EX	1,2-DIPHENYLHYDRAZINE	ug/L	<	10	10
FTA-MO6	19900214	PHYSICAL	pH	ph	•	4.99	0
FTA-MO6	19900214	PHYSICAL	CONDUCTIVITY	umnos		33	ŏ
FTA-MO6 FTA-MO6	19900214 19960214	PHYSICAL	TEMPERATURE	deg C		13.4	Ŏ
FTA MO6	19900214	METALS METALS	ANTIMONY	ug/L	<	30	30
FTA-MC6	19900214	METALS	ARSENIC	ug/L	<	1	1
FTA-MO6	19900214	METALS	BERYLLIUM CADHIUM	ug/L	· ·	1	1
FTA-MO6	19900214	METALS	CHRONIUM	ug/t	<	5	5
FTA-MO6	19900214	METALS	COPPER	ug/L ug/L	«	10 10	10
FTA-MO6	19900214	METALS	LEAD	ug/L	· .	30	10 30
FTA MOS	19900214	METALS	MERCURY	ug/L	<	.2	.2
FTA-MO6 FTA-MO6	19900214 19900214	METALS	NICKEL	ug/L		144	15
FTA-HOG	19900214	METALS	SELENTUM	ug/L	<	2	2
FTA-MO6	19900214	METALS METALS	SILVER	ug/L	<	10	10
FTA-MO6	19900214	METALS	THALLIUM	ug/L	<	10	10
FTA-MO6	19900214	HERBICIDES ANAL	Z!NC 2,4-0	ug/L		17.5	5
FTA-MO6	19900214	HERBICIDES ANAL	2,4,5-1	ug/L ug/L	< <	50 50	50 50
FTA-MO6	19900214	HERBICIDES ANAL	2,4,5-TP (STLVEX)	ug/L	₹	50	50 50
FTA-MO6	19900214	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-MO6	19900214	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-MO6	19900214 19900214	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
FTA-MO6	19900214	PURGEABLE COMPO	BRONGFORM	ug/L	¢	5	5
FTA-MOS	19900214	PURGEABLE COMPO PURGEABLE COMFO	BROMOMETHANE	ug/L	< -	10	10
FTA-MO6	19900214	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-MOG	19900214	PURGEABLE COMPO	CHLOROBENZENE CHLORODIBROMOMETHANE	ug/L	<	5	5
FTA-MO6	19900214	PURGEABLE COMPO	2-CHLOROETHALAINAF ETHER	ug/£	< .	5	5
FTA-MO6	19900214	PURGEABLE COMPO	CHLOROETHANE	ug/L	•	5	5
FTA-MO6	19900214	PURGEABLE COMPIN	CHLOROFORM	ug/l ug/L	«	10 5	10
FTA-406	19960214	PIRGEABLE COMPO	CHLOROMETHANE	ug/t	₹	10	5 10
FTA-MO6	19900214	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L		5	5
FTA-MOS	19900214	PURGEABLE COMPO	1,2 DICHLONOBENZENE	ug/L	<	Ś	Ś
FTA-MO6	19900214	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	Š

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MOS	19900214	PURGEABLE COMPO	1,4-DICHLOROSENZENE	⊌g/L	<	5	5
FTA-MO6	19900214	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	<	5	5
FTA-MO6	19900214	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-MO6	19900214 19900214	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L		6 5	5 5
FTA-MO6 FTA-MO6	19900214	PURGEABLE COMPO PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE	ug/L ug/L	< 4	5	5
FTA-MO6	19900214	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-MC6	19900214	PURGEABLE COMPO	TRANS-1,3-DICHLOROFROPENE	ug/L	έ.	Ś	Ś
FTA-MO6	19900214	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5
FTA-MO6	19900214	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-MO6	19900214	PURGEABLE COMPO	1,1,2,2-TETRACHLORDETHANE	ug/L	<	5	5
FTA-MO6	19900214	PURGEABLE COMPO	TETRACHLOROETHENE	ug/i.	<	. 5	5
FTA-MO6 FTA-MO6	19900214 19900214	PURGEABLE COMPO PURGEABLE COMPO	TOLUENE	ug/L	<	5 19	5 5
FTA-HO6	19900214	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE	ug/L ug/L	<	5	5
FTA-HO6	19900214	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	`	223	5
FTA-MO6	19900214	PURGEABLE COMPO	TRICHLGROFLUCROMETHANE	ug/L	<	10	10
FTA-MO6	19900214	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	ACENAPHTHENE	ug/L	<	10	10
FTA-MC6	19900214	BASE/NEUTRAL EX	ACENAPHTHYLENE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	ANTHRACENE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	SENTIOL - NEW YORK OF THE	ug/L	< .	50	50
FTA-MO6 FTA-MO6	19900214 19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	BENZO(a)ANTHRACENE BENZO(b)FLUORANTHENE	ug/L ug/L	< <	10 10	10 10
FTA-MO6	19906214	BASE/NEUTRAL EX	BENZO(k) FLUORANTHENE	ug/L	` `	10	10
FTA-MG6	19900214	BASE/NEUTPAL EX	BENZO(a) PYRENE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	BENZO(g,h,i)PERYLENE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	BUTYLBENZYLPHTHALATE	ug/L	<	10	10
FTA-NO6	19900214	BASE/HEUTRAL EX	4-BROMOPHENYL PHENYL ETHER	ug/L	<	10	16
FTA-MO6	19900214	BASE/NEUTRAL EX	BIS(2-CHLOROETHYL)ETHER	ug/L	«	10	10
FTA-MO6 FTA-MO6	19900214 19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	BIS(2-CHLOROETHYOXY)METHANE BIS(2-ETHYLHEXYL)PHTHALATE	ug/L	<	10 56	10 10
FTA-M06	19900214	BASE/NEUTRAL EX	BIS(2-CHLOROISOPROPYL)ETHER	ug/L ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	2-CHLORONAPHTHALENE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	4-CHLOROPHENYL PHENYL ETHER	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	CHRYSENE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	DIBENZO(a,h)ANTHRACENE	ug/L	<	10	10
FTA-HO6	19900214	CASE/NEUTRAL EX	DI-"I-BUTYLPHTHALATE	ug/L	<	10	16
FTA-MO6 FTA-MO6	19900214 19900214	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	«	10	10 10
FTA-HO6	19900214	PURGEABLE COMPO PURGEABLE COMPO	1,3-DICHLOROBENZENÉ 1,4-DICHLOROBENZENÉ	ug/L ug/L	< <	10 10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	3,3-DICHLOROSENZIDINE	ug/L	` `	20	20
FTA-MO6	19900214	BASE/NEUTRAL EX	DIETHYL PHTHALATE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	DIMETHYL PHTHALATE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	2,4-DINITROTOLUENE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	2,6-DINITROLOLUENE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	DI-N-OCTYLPHIHALATE	ug/L	· · ·	10	10
FTA-MO6 FTA-MO6	19900214 19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	DIOXIN(2,3,7,8-TCDD)	ug/L	NEG <	0 10	0 10
FTA-MO6	19900214	BASE/NEUTRAL EX	FLUORANTHENE FLUORENE	ug/L ug/L	` `	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	HEXACHLOROBENZENE	ug/L	· <	10	10
FTA-MO6	19900214	BASE/HEUTRAL EX	HEXACHLOROBUTAD TENE	ug/L	•	10	10
FTA-MO6	19900214	BASE/HEUTRAL EX	HEXACHLOROCYCLOPENTAD LEHE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	HEXACHLOROETHANE	ug/L	<	10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	INGENO(1,2,3-c,d)PYRENE	ug/L	<	10	10
FTA-MO6	19900214 19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	I SOPHORONE	ug/L	<	10	10
FTA-HO6 FTA-HO6	19900214	BASE/NEUTRAL EX	naphthalené nitrobenzene	u₃/L ug/L	< <	10 10	10 10
FTA-MO6	19900214	BASE/NEUTRAL EX	N-NITROSO-DI-METHYLAMINE	ug/L	·	10	10
FTA-MG6	19900214	BASE/NEUTRAL EX	H-HITROSO-DI-PHENYLAMINE	ug/L		10	10
FTA-MO6	19900214	BASE/NEUTRAL EX	N-MITROSO-DI-N-PROPYLAMINE	ug/L	<	10	10
FTA-HO6	19900214	BASE/NEUTRAL EX	PHENANTHRENS	ug/L	<	10	10
FTA-1106	19900214	BASE/HEUTRAL EX	PYRENE	ug/L	<	10	10
FTA-NO6	19900214	GASE/NEUTRAL EX	1,2,4-TRICHLOROSENZENE	ug/L	<	10	10
FTA-HO6 FTA-HO6	19900214 19900214	ACID EXTRACT ACID EXTRACT	4-CHLORO-3-METHYLPHENOL	ug/L	*	10	10
FTA-HO6	19900214	ACID EXTRACT	2,4-01CHLOROPHENOL 2.4-01METHYLPHENOL	ug/l. ug/L	< <	10 10	10 10
FTA-MO6	19900214	ACID EXTRACT	2.4-01N1TROPHENOL	ug/L	` `	50	50
FTA-HO6	19900214	ACID EXTRACT	2-METHYL-4,6-DINITROPHENOL	ug/L	<	50	50
		= '	•	-			

WE.	ELL #	DATE	HEADING	PARAMETER	TIKU	VALUE	DET	DET LIM
FTA-		19900214	ACID EXTRACT	2-HITROPHENOL	ug/L	<	10	10
FTA-		19900214	ACID EXTRACT	4-NITROPHENOL	ug/L	·	50	50
FTA-		19900214	ACID EXTRACT	PENTACHLOROPHENOL	ug/L	<	50	50
FTA-		19900214	ACID EXTRACT	PHENOL	ug/L	<	10	10
FTA-		19900214	ACID EXTRACT	2,4,5-TRICHLOROPHENOL	ug/L	<	10	10
FTA-		19900214 19900214	PESTICIDES	ALDRIN	ug/L	<	.94	.04
FTA-		19900214	PESTICIDES	a-BHC	ug/L	<	.03	. 03
FTA-		19900214	PESTICIDES PESTICIDES	b-84C	ug/L	<	.06	.06
FTA-		19900214	PESTICIDES	g-SHC	ug/L	<	.09	.09
FTA-		19900214	PESTICIDES	GH8-b	ug/L	<	.04	.04
FYA-		19900214	PESTICIDES	CHLORDANE 4,4/-DDD	ug/L	<	. 14	.14
FTA-	4 06	19900214	PESTICIOES	4,4'-DDE	ug/L	<	.11	.11
FTA-	M06	19900214	PESTICIDES	4,4'-DDT	ug/L ug/L	< <	.04	.04
FTA-	M06	19900214	PESTICIDES	DIELDRIN	ug/L	~	.12	.12
FTA-	M06	19900214	PESTICIDES	ENDOSULFAN [ug/L		.14	.14
FTA-		19900214	PESTICIDES	ENDOSULFAN II	ug/L		.04	.04
FTA-I		19900214	PESTICIOES	ENDOSULFAM SULFATE	ug/L	•	.66	.60
FTA-		19900214	PESTICIDES	ENORIN	ا/روں	<	.06	.96
FTA-		19900214	PESTICIDES	ENDRIN ALDEHYDE	ug/L	<	.23	.23
FTA-		19900214	PESTICIDES	HEPTACHLOR	ug/L	<	.03	.03
FTA-		19900214	PESTICIDES	HEPTACHLOR EPOXIDE	ug/L	<	. 83	.83
FTA-I		19900214	PESTICIDES	METHOXYCHLOR	ug/L	<	1.8	1.8
FTA-		19900214	PCB	PCB-1016	ug/L	<	.1	.1
FTA-		19900214 19900214	PCB	PC8-1221	ug/L	<	.1	.1
FTA-F		19960214	PCB	PCB-1232	ug/L	<	.1	.1
FTA-		19900214	PC8 PC8	PC8-1242	ug/L	<	.1	.1
FTA-M		19900214	PC8	PC8-1248	ug/L	<	• !	.1
FTA -	106	19900214	PCB	PC8-1254 PC8-1260	ug/L	•	.1	-1
FTA-M	106	19900214	PESTICIDES	TOXAPHENE	ug/L	< <	3.1	.1
FTA-H	1C5	19900214	TENTATIVELY COM	DI-TERT-BUTYL PHENOL	ug/L ug/L	•	2.4 18	2.4
FTA-H		19900214	TENTATIVELY COM	CIS-1,2-DICHLOROETHENE	ug/L		13	- 999 - 999
FTA-M		19900214	SURR COMP	1,2-DICHLOROETHANE-04-S	% ug/L		43.7	50
FTA-M		19900214	SURR COMP	TOLUENE-D8-S	% ug/L		48.9	50
FTA-H		19900214	SURR COMP	4-BROMOFLUORGEENZENE-S	X ug/L		48	50
FTA		19900214	SURR COMP	NITROBENZENE-D5-S	% ug/L		18.2	50
FTA-M		19900214	SURR COMP	2- FLUOROBIPHENYL-S	% ug/L		25.8	50
FTA-M		19900214 19900214	SURR COMP	TERPHENYL-D14	% ug/L		27.1	50
FTA-M		19900214	SURR COMP SURR COMP	PHENOL-D6-S	≈ ug/L		26.3	100
FTA-M	-	19900214	SURR COMP	2-FLUCHOPHENOL-S 2-4g-1C JHROMORBIRT-6,4,5	% ug/L		43.3	100.1
FTA-M		19900214	BASE/NEUTRAL EX	1,2-DIPHENYLHYDRAZINE	% ug/L		63.5	100
FTA-M	07	19900214	PHYSICAL	PH	ug/L	<	10	10
FTA-M	07	19900214	PHYSICAL	CONDUCTIVITY	pri umhos		4.77 33	0
FTA:M		19900214	PHYSICAL	TEMPERATURE	deg C		33 14	0
FIA-M		19900214	METALS	YHOMETHA	ug/L	<	30	30
FTA-H		19900214	METALS	ARSENIC	ug/L	<	1	1
FTA-HO		19900214	METALS	8ERYLL:UM	ug/L	<	1	1
FTA-MO		19900214	HETALS	CASHEON	∪g/L	•	5	5
FTA-HO		19900214	METALS	CHROMELIN	ug/Ł	<	10	10
FIA-MO		19900214	HETALS	COFFER	Lig/L	<	10	10
FTA-MO		19900214	METALS	LEAD	ug/E	<	30	30
FTA-MC		19900214 19900214	METALS	MERCURY	ug/l	<	.2	.2
FTA-MO		19900214	METALS	MICKEL	ug/L		32.5	15
FTA-MO		19900214	METALS	SELENIUM	ug/L	<	2	2
FTA-MO		19900214	METALS METALS	SILVER	ug/L	≺	10	10
FTA-MO		19900214	METALS	THALL TUM	ug/L	<	10	10
FTA-MO		19900214	HERBICIDES ANAL	ZINC 2 i.n	ug/L	_	30.8	5
FTA-MO		19900214	HERBICIDES ANAL	2,4·0 2,4,5·t	ug/L	•	50	50
FTA-NO		19900214	HERBICIDES ANAL	2,4,5-TP (SILVEX)	ug/L	٠	50	50
FTA-HO	4			41-17 IL (917464)	ug/L	<	50	50
		19900214	PURCEABLE COMPO	AC DCH ETH	120 / 1	-	10	• •
FTA-MO	7	19900214 19900214	PURGEABLE COMPO PURGEABLE COMPO	ACROLEIN ACRYLONITRILE	ug/i, ug/i	< •	10	10
ETA: NO	7 1 7 1	19900214 19900214		ACRYLOWITRILE	ug/L	∢	10	10
FTA-MO FTA-MO	7 1 7 1 7 1	19900214 19900214 19930214	PURGEABLE COMPO PURGEABLE COMPO PURGEABLE COMPO		ug/L ug/L	«	10 5	10 5
FTA-MO FTA-MO FTA-MO	7 1 7 1 7 1 7 1 7 1	19900214 19900214 19900214 19900214	PURGEABLE COMPO PURGEABLE COMPO PURGEABLE COMPO PURGEABLE COMPO	ACRYLOMITRILE Benzene Bromoforn Bromomethane	ug/L ug/L ug/L	∢	10 5 5	10 5 5
FTA-MO FTA-MO	7 1 7 1 7 1 7 1 7 1	19900214 19900214 19930214	PURGEABLE COMPO PURGEABLE COMPO PURGEABLE COMPO	AGRYLONITRILE Benzene Bromoforn	ug/L ug/L	< <	10 5	10 5

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-HO7	19900214	PURGEABLE COMPO	CHLORCOIBROMOMETHANE	ug/L	<	5	5
FTA-MG7	19900214	PURCEAULE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	Ś	5
FTA-MO7	19900214	PURGEABLE COMPO	CHLOROETHAME	ug/L	<	10	10
FTA-MO7	19900214	PURCEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-MG7 FTA-MG7	1 99 00214 19900214	PURUEABLE COMPO	CHLOROMETHANE	ug/L	<	10	10
FTA-HO7	19900214	PURGEABLE COMPO PURGEABLE COMPO	DICHLOROBRONUMETHANE 1,2-01CHLOROBENZENE	ug/L	<	5	5
FTA-M07	17900214	PURGEABLE CUMPO	1,3-01CHLOROGENZENE	ug/L ug/L	« «	5 5	S 5
FTA-MC7	19900214	PURGEABLE COMPG	1,4-01CHLOROBENZENE	ug/t	`	Ś	ś
FTA-MG7	19905214	PURGEABLE COMPO	1,1-DICHLORGETHARE	ug/L		8.6	5
FTA NOT	19900214	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-HO7	19900214	PURGEABLE COMPO	1,1-CICHLORDETHERE	ug/L	<	5	5
FTA-407	19900214	PURCEABLE COMPO	TRANS-1,2-DICHLGROETHENE	ug/L	<	5	5
f.4 HG7 Ff#-₩G7	19900214 19900214	PURGEASUS COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
77A-M07	19400214	PURGEABLE COMPO PURGEABLE COMPO	CIS-1,3-01CHLCROPPOPENE TRANS-1,3-01CHLCROPPOPENE	49/ L	<	5	5
F13-h07	19900214	PURGEABLE COMPO	ETHYLBENZENE	ug/L ug/L	< <	. 5	5 5
CTA-MO7	19900214	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	~	10	10
FTA-407	19900214	PURGEABLE COMPO	1,1,2,2-TETRACHLORGETHANE	ug/L	₹	5	5
TA-HG7	19900214	PURGEABLE COMPO	TETRACHLORGETHERE	Jg/L		11.7	5
FTA-MOT	19900214	PURGEABLE COMPO	TOLUENE	ug/L	€	5	S
714-H07	19900214	PURGEABLE COMPO	1,1,1-TRICHLORGETHANE	ug/L		55.1	5
FTA-MO7	19900214	PURGEASLE COMPO	1,1,2-TRICHLOROETHANE	ng/L	<	5	5
FTA-#07 FTA-#07	19900214 19900214	PURGEASLE COMPO	TRICHLOROETHENE	ug/L		87.5	.5
FTA-MO7	19900214	PURGEABLE COMPO PURGEABLE COMPO	TRICHLOROFLUCACMETHANE	ug/L	< <	10	10
FTAte	19900214	BASE/NEUTRAL EX	VINYL CHLORIDE ACEMAPHTHEME	ug/L ug/L		10 10	10 10
FTA-MO7	19900214	BASE/REUTRAL EX	ACENAPHIHYLENE	u3/₹		10	10
FTA-HC7	19900214	BASE/NEUTRAL EX	ANTHRACENE	ug/L	<	10	10
FTA-MO7	19900214	BASE/HEDERAL EX	BEHZIDINE	ug/L	<	50	50
FTA-HOZ	19960214	BASE/NEUTRAL EX	BENZO(#)ANTHRACENE	ug/L	<	10	10
FTA-MO7	19900214	BASE/NEUTRAL EX	BENZO(b)FLUGRANTHENE	ug/L	<	10	10
FTA-MOT	19900214	BASE/HEUTRAL EX	BENZO(k)FLUORANTHENE	ug/L	<	10	10
FTA-MGT FTA-MOT	19900214 19900214	BASE/NEUTRAL EX	BENZO(a)PYRENE	ug/i	<	10	10
FTA-MO7	19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	BENZO(g,h,i)PERYLENE BUTYLBENZYLPHTHALATE	ug/L	«	10	10
FTA-HO7	19900214	BASE/NEUTRAL EX	4-BROMOPHENYL PHENYL ETHER	ug/L ug/L	•	10 10	10 10
FTA-MO7	19900214	BASE/REUTRAL EX	BIS(2-CHLOROETHYL)ETHER	ug/L	<	10	10
FTA-MO7	19900214	BASE/NEUTRAL EX	BIS(2-CHLOROETHYOXY)METHANE	eg/L	(10	10
FTA-HO7	19900214	BASE/NEUTRAL EX	BIS(2-ETHYLNEXYL)PHTHALATE	ug/t.	<	10	10
FTA-HO7	19900214	BASE/NEUTRAL FY	815(2-CHLOROTSOPROPYL)ETHER	ug /L	<	10	10
FTA-MG7	19900214	BASE/WEUTRAL EX	2-CHLORONAPHTHALENE	ug/L	<	10	10
FTA-HO7 FTA-HO7	19900214 19900214	BASE/NEUTRAL EX	4-CHLOROPHENYL PHENYL ETHER	ua/L	<	10	10
FTA-HOT	19900214	GASE/NEUTRAL EX BASE/NEUTRAL EX	SHEER TOOL CARTER OF	ug/L	<	10	10
FTA-407	19900214	BASE/NEUTRAL EX	DIBENZO(a,h)ANTHRACENE DI-N-BUTYLPHTHALATE	ug/l	€	10 10	10 10
FTA-HO7	19900214	PURCEABLE COMPO	1,2-DICHLOROBENZENE	ug/L ug/L	``	10	10
FTA-MOT	14+00214	PURGEABLE COMPO	1,3-DICHLOROBENZENE	43/L		10	10
FTA-MG7	19900214	PURGEABLE COMPO	1,4-DICHLORDEENZENE	Jg/L	•	10	10
FTA-MU7	19400214	Base/Neutral by	3,3-DICHLORDSENZIDINE	ug/L	<	20	20
FTA-MOT	19900214	BASE/HEUTRAL EX	DIETHYL PHTHALATE	ug/L	<	10	10
FTA-MO7	19900214	BASE/NEUTRAL EX	DIMETHYL PHTHALATE	ug/L	<	10	10
F1A-MG7 F1A-MO7	19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	2,4-018[TROTOLUERE	ug/i	<	10	10
FTA-HO7	19900214	BASE/NEUTRAL EX	2,6-DIMITROLOLUEME DI-M-CCTYLPHIHALAIE	ug/L	<	10	10
FTA-MG7	19900214	BASE/NEUFRAL EX	DIOXIN(2,3,7,8-7CLD)	ugyt	NEG.	10 0	10
FTA-MO7	12900214	BASE/NEUTRAL EX	FLUORANTHENE	ug/L ug/l	46.U <	19	0 10
FTA-HO7	19900214	BASE, NEUTRAL EX	FLUDRENE	ug/L		10	10
FTA-MG7	19900214	BASE/HEUTRAL EX	HEXACHLOROBEHZENE	ug/t		10	10
FTA-MO7	19900214	BASE/NEUTRAL EX	Babi da Yuroho Jadayah	UZ/L	<	10	10
F14-MG7	19900214	BASE/MOUTRAL EX	HEXACHLOROXIYCLOPENTED TENE	ug/E	<	10	10
F1A-M07	19900214	BASE/MEUTPAL EX	HEXACHL OPUET HANE	247L	∢	10	10
F1A-M97 F1A-M07	19900214 19956214	RASE/HEUTRAL EX BASE/HEUTRAL EX	INDENG(1,2,3-c.d)PYRENE	uq/L	•	10	10
FTA-807	12900214	BASE/MEUTRAL EX	ISOFHORORS WARMTHALTOR	ug/i.	4	10	10
FTA-MU7	19900214	BASE/NEUTPAL EX	NAPHIHALINE NITHODELNIENE	ug/l ug/l	∢	10 10	10 10
FTA-MO7	19900214	RASE/NEUTRAL EX	M-MITROSO-DI-METHYLM-M	ug/i	``	10	10
FTA-MO7	19906214	BASE/MEUTRAL EX	N-NITROSO-DI-PHENYLAMINE	ug/i	è	10	10
FTA-HO7	19900214	BASE/HEUTRAL EX	#-MITROSO-DI-H-PROPALAMINE	ug/L	•	10	10

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO7	19900214	BASE/NEUTRAL EX	PHENANTHRENE	ug/a	<	10	19
FTA-MOT	19900214	BASÉ NELTRAL EX	PYRENE	ug/i	ά	10	10
STA-#07	19900214	BASE, NEUTRAL EX	1,2,4-TRICHLOROEEVZENE	ug, L	<	10	10
FTA-407	19900214	ACID EXTRACT	4 - CHLORO-3 - METHYLPHENGL	ug/L	<	10	10
-TA-#07	19900214	ACID EXTRACT	2,4-bichlorgphenol	ن بود	<	10	10
FTA-MO7	19900214	ACID EXTRACT	2,4-DIMETHYLEHEWOL	wa/£	<	10	10
FTA-HO7	19900214	ACID EXTRACT	2,4-DINITEGP+ENGL	ug/L	<	50	50
FTA-407	19900014	TOAPTKE CLOA	2-METHYL-4,6-DINITROPHENOL	ug/L	<	50	50
FTA-MC7	19900214	ACID EXTRACT	2-NITROPHENGL	ug/L	<	10	10
FTA-HC7	19900214	ACID EXTRACT	4-MITROPHENGE	ug/L	<	50	50
FTA-HO7 FTA-HO7	19900214 19900214	TOARTYS CIDA TOARTXS CIDA	PENTACHLOROPHENOL	ug/L	•	50	50
FTA-MO7	19960214	ACID EXTRACT	PRENOL 2 (S. TE LOW DECEMBRIS	19/L	٠	10	10
FTA-MS7	19900214	PESTICIDES	2,4,5-TRICHLORSP#ENGL ALDRIN	ug/L	•	10 .84	50 . J4
FTA-MO7	19900214	PESTICIDES	a-2HC	ug/L ug/L		.03	.03
FTA-HUZ	19900214	PESTICIDES	2-SKC	ug/L	<	.06	.06
FTA-MG7	19900214	PESTIC/DES	3-9HC	ug/L	· ·	.09	.09
FTA: MOT	19900214	PESTICIOES	d-s+C	ug/L	<	.04	.04
FTA-MO7	19900214	PESTICIOES	CHECADAMS	ug/t	<	. 16	. 14
FTA-RG7	19900214	PESTICIDES	4,41-60B	աց/և	<	.11	.11
FTA-MOZ	19900214	PESTICIDES	4,41-00E	ug/L	₹	.04	. Û4
FTA-MO7	19983214	PESTICIDES	4,41-00T	lug/L	<	.12	.12
FIA-MG7	19960214	PESTICIDES	DIELORIM	ug/L	<	.02	.02
rTA-M07	19900214	PESTIC:DES	ENDOSULFAN 1	ug/L	<	. 14	. 14
F FA-MO7	19900214	PERTICIDES	ENDOSULFAM II	ug/L	•	. 04	.34
FTA-MO7	19900214	PESTICIDES	ENDOSULFAN SULFATE	ug/L	•	.66	.56
FTA-407	19900214	PESTICICES	ENGRIN	ug/L	<	.06	.06
FT3-#07	19900214	PESTICIDES	ENDRIN ALDEHYDE	ug/L	∢	.23	.23
FTA-MO7 FTA MO7	19900214	P2811C1DE \$	HEPTACHLOR	ug/L	<	.03	.03
FTA-MOT	19900214 19900214	PESTICIDES	HEPTACHLOR EPGRIDE	ug/L	<	.83	. 83
FTA-MC7	19900214	PESTICIDES PCB	METHORYCHLOR POS-1016	ug/L	<	1.8	1.8
FTA-MO7	19900214	PCB	PCB-1221	ug/L	< <	.1	.1
FTA-MOT	19900214	PCR	PC3-1232	ug/L ug/L	``	. ;	.1
FTA MOZ	19900214	PC8	9C8-124Z	ug/L	,	. 1	. 1
FTA-HO7	19900214	P.C.B	PER-1248	ug, L	<	.1	1
FTA-MG7	19900214	P03	PCB-1254	ا/يوب	<		. 1
FTA-MQT	19906214	PCH	PC3-125G	ug/L	<		. i
FTA MI, T	19900214	PESTICICES	TCXADMENE	Ug/L	<	2.4	2.4
FTA: MOZ	1990/214	SURR COMP	1,2-DICHLOROETHAGE-04-S	≈ ug/L		43.7	50
FTA-MG7	19900214	SURR COMP	10LUE#E-08-5	2 ug/c		47.1	50
FTA-#07	19900214	SURR COMP	4-Bromofluoroberzene-s	2 ug/L		44.8	50
FTA-MG7	19900014	SURR COMP	NITROBENZENE-05-S	% ug/L		19.1	50
FTA-MG7	19905214	SURR COMP	2-FLUOROBIPHENTL S	% ug/L		23.6	50
FTA-MO7 FTA-MO7	19900214	SURR COMP	TERPHEREL-014	% ug/L		27	50
FTA-MG7	19965214 19966214	SURR COMP	PHEXCL-D5-S	¥ ug/L		17.8	100
FTA-MO7	19900214	SURR COMP SURR COMP	2-FEUOROFHENCE-5 2-4,6-TRIBROMOPHEWOL-DW-S	% ug/L		30.4	100.1
FTA-MO7	1995 214	BASE/HEUTRAL EX	1,2-DIPHENYLHYTRAZINE	% ug/L		54.6	100
FTA-HOB	19011214	PHYSICAL	DH	ug/L ph	•	10 4.62	10 0
FTA-MGS	19900214	PHYSICAL	CONDUCTIVITY	umhrs		50	0
FTA-HCB	19900214	PHISICAL	TEMPERATURE	deg C		14.1	ō
FTA-BOB	19900214	METALS	PASTINGAY	ug/L	•	30	30
80M-A14	1990,214	METALS	MISENIC	49/L	<	1	1
FTA HTS	19900214	METALS	BERFLETUM	ug/L	•	1	1
FTA-MUE	19900214	ME TA 1	CACHTUM	ug/L	<	5	5
FTA-MOB	1990/214	ine TA(S	CHADMIUM	ug/L	<	10	10
FTA-HG8	19900214	METALY	COPPER	Lg/L	•	10	10
FTA-MC5	199607	METALS	LEAD	ug/L	<	30	30
FTA-HO8	1200214	METALS	MERCURY	ug/L	•	۶.	. 2
FTA HUB	19960714	METALS	MICKEL	ug/L	<	15	15
FTA-MG8	19900214	METALS	SELENIUM	ug/L	<	2	
FTA-MOS FTA-MOS	19900214 19900214	METALS	SILVER	ug/L	*	10	10
FTA-NOS	1995 (214	METALS METALS	THREETOM	しゅん	•	10	10
FTA: HUS	1990/214	HERBICIDES ANAL	21 NC 2,4-0	ug/L		19.8	5
FTA HOB	19960214	MERBICICIS ANAL	2,4-0 2,4,5-T	ug/L	•	50 50	50 50
FTA-HGB	12900214	HERMICIOFS ANAL	2,4,5-15 (SILVEX)	ug/L ug/L	•	50	50 50
FTA-MG8	19900214	PURSEABLE COMPO	ACROLEIN	ug/l	•	10	າ້ວ

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-NO8	19900214	PURGEABLE COMPO	ACRYLONITRILE	ug/L	٠	10	10
FTA-MOS	19900214	PURCEABLE COMPO	BENZENE	ug/L	~	5	5
FTA-MO8	19900214	PURGEABLE COMPO	BROMOFORM	ug/L	<	5	5
FTA-MOS	19900214	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
FTA-HG8	19900214	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	Š	5
SOH-ATT	19900214	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
FTA-MOS	19900214	PURGEABLE COMPO	CHLOROG I BROMOMETHANE	ug/L	<	5	5
FTA-MO8	19900214 19900214	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/Ł	<	5	5
FTA-MOB	19900214	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-MOS	19900214	PURGEABLE COMPO	CHLOROFORM	ug/L	<	. 5	5
FTA-HO8	19900214	PURGEABLE COMPO	CHLOROMETHANE DICHLOROBROMOMETHANE	ug/L	<	10	10
FTA-MOB	19900214	PURCEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
FTA-408	19900214	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L ug/L	«	5 5	5
BOH-ATS	19900214	PURGEABLE COMPO	1,4-DICHLOROGENZENE	ug/L	` `	5	5
FTA-MOS	19900214	PURCEABLE COMPO	1,1-DICHLORDETHANE	ug/L	•	17.1	5 5 5
SCH-ATR	19900214	PURGEABLE COMPO	1.2-DICHLOROETHANE	ug/L		8.8	Ś
FTA-MO8	19900214	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L		7.5	5
FTA-HOB	19900214	PURGEABLE COMPO	TRANS-1,2-DICHLORGETHENE	ug/L	<	5	5
FTA-MUS	19900214	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
FTA-MOR	19900214	PURCEASLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-MOB FTA-MUB	19900214	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-HOS	19900214 19900214	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	s
FTA-MOB	19900214	PURGEABLE COMPO PURGEASLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-HOS	19900214	PURGEABLE COMPO	1,1,2,2-TETRACHLORGETHANE	ug/L	<	5	5
FTA-HO8	19900214	PUNGEABLE COMPO	TETRACHLOROETHENE	ug/L		14.5	5
FTA-MO8	19906214	PURGEABLE COMPO	TOLUENE 1,1,1-TRICHLOROETHANE	ug/L	<	5	5
BOH-ATT	19900214	PURGEABLE COMPG	1,1,2-TRICHLOROETHANE	ug/L		114 5	5
FTA-MOS	19900214	PURGEABLE COMPO	TRICHLOROETHENE	ug/L ug/L	<	175	5 5
FTA-MG8	19900214	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-MOS	19900214	PURSEABLE COMPG	VINYL CHLORIGE	ug/L	· ·	10	10
FTA-MG8	19900214	BASE/HEUTRAL EX	ACENAPHTHENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/WEUTRAL EX	ACENAPHTHYLENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/HEUTRAL EX	ANTHRACERE	ug/L	<	10	10
FTA-MOS FTA-MOS	19900214	BASE/NEUTRAL EX	BENZIDINE	Ug/L	<	50	50
FTA-HC8	19900214 19900214	BASE/NEUTRAL EX	BENZO(A)ANTHRACENE	ug/L	<	10	10
FTA-MC8	19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	BEHZO(b)FLUORAHTHENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	BEHZO(k)FLUORANTHENE	ug/L	<	10	10
FTA-MG8	19900214	BASE/NEUTRAL EX	BEHZO(a)PYRENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	BENZO(g,h,i)PLRYLENE BUTYLBENZYLPHThALATE	ug/L	٠	10	10
FTA-MG8	19900214	BASE/NEUTRAL EX	4-BRONOPHENYL PHENYL ETHER	uq/L	< <	10	10
BOM-ATA	19900214	RASE/NEUTRAL EX	BISC2-CHEORGETHYL JETHER	ug/L ug/L	ì	10 10	10 10
FTA-MUS	19900214	BASE/NEUTRAL EX	815(2-CHLOROETHYOXY)METHANE	ug/L	``	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	SIS(2-ETHYLHEXYL)PHTHALATE	ug/L		10	10
FTA-NO8	19900214	BASE/NEUTRAL EX	BIS(2-CHLORDISOPROPYL)ETHER	ug/L	•	10	10
FTA-MOR	19900214	BASE/HEUTRAL EX	2-CHLOROMAPHTHALENE	ug/L	<	10	10
FTA-MOB	19900214	BASE/NEUTRAL EX	4-CHLOROPHENYL PHENYL ETHER	ug/L	•	10	10
FTA-MOS FTA-MOS	19900214 19900214	BASE/NEUTRAL EX	CHRYSENE	ug/L	<	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	DIBENZO(a,h)ANTHRACENE	ug/L	<	10	10
FTA-MOS	19903214	BASE/NEUTRAL EX	DI-N-BUTYLPHTHALATE	ug/L	•	10	10
51A-Wid	1. 20214	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	10	10
FTA-MUB	19900214	PURGEABLE COMPO	1,3-DECHLOROBENZENE 1,4-DICHLOROBENZENE	ug/L	•	10	10
FTA-HGB	19900214	BASE/NEUTRAL EX	3,3-DICHLORONENZIDINE	ug/L	<	10	10
F14-#38	19900214	BASE/NEUTRAL EX	DIETHYL PHTHALATE	ug /L	«	20	20
FTA HOS	19900214	BASE/HEUTRAL EX	DIMETHTL PHYMALATE	ug/L ug/L	٠,	10 10	10
FTA-MOS	19906214	BASE/NEUTRAL EX	2,4-01WITROTOLUENE	ug/L	•	10	10 10
FTA-MOS	19900214	BASE/NEUTRAL EX	2,6-DINITROLOLUENE	ug/L	· ·	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	DI-M-OCTYLPHTHALAYE	ug/L	i i	10	10
FTA-MO8	19900214	BASE/NEUTRAL EX	DIOXIN(2,3,7,8-1000)	ug/L	· •	ő	ő
FTA-MOS	19900214	BASE/HEUTRAL EX	FLUORANTHENE	ug/L	4	10	10
FTA-MOS	19900214	BASE/NEUTRAL EX	FLUCRENE	ug/L	<	10	10
FTA-HOS	19900214	BASE/HEUTRAL EX	HEYACHLORGBENZEHE	ug/L	<	10	10
F1A-H08 FTA-H08	19900214 19900214	BASE/HEUTRAL EX	HEXACHLOROBUTAD TENE	ug/L	<	10	10
FTA-HOS	19900214	BASE/NEUTRAL EX	HEXACHLOROCYCLOPENTADIENE	ug/L	<	10	10
FTA-HU8	19900214	BASE/HEUTRAL EX BASE/HEUTRAL EX	HEXACHEGREETHANE	ug/L	<	10	10
	17700614	ES JAKIUJALICHE	INDENO(1,2,3-c,d)PYRENE	ug/L	<	10	10

## 174-808 19900214 BASE/REUTRAL EX NAPPTHALEMS	WELL #	DATE	HEAD ING	PARAMETER	UNIT	VALUE	DET	DET LIM
FIA-HORS 19000214 RASC/HEUTRAL EX			BASE/NEUTRAL EX	ISOPHORONE	ug/t.	<	10	10
### FIR-HORS 19900214 BASE/MEUTRAL EX H-NITROSO-01-MEDITALHINE 00/L < 10 10 10 10 10 10 10 10 10 10 10 10 10				NAPHTHALENE	_	<	10	
### ### ### #### #####################					ug/L	•		
### FTA-HORD 19900214 BASE/MEUTRAL EX FTA-HORD 19900214 BASE/MEUTRAL EX FTA-HORD 19900214 BASE/MEUTRAL EX FTA-HORD 19900214 BASE/MEUTRAL EX FTA-HORD 19900214 BASE/MEUTRAL EX FTA-HORD 19900214 BASE/MEUTRAL EX 1,2,4-TRICHICRICREPERE UNJ. 1 0 10 10 10 11 11 11 11 11 11 11 11 11								
### FTA-HOS 19900214 SASE/HEUTRAL EX PREME								
FIA-MOB 19900214 BASE/MEUTRAL EX 1,2,4-TRICHUGORENIZHE					-			
FIA-MOS 19900214 SASE/MELTRAL EX 1,2,4-TRICHOROSENZEWE 0971					-			
FIA-HOB 19900214	FTA-MO8	19900214						
FTA NOS 19900214 ACID EXTYLCT		_			_			
FIA-HOS 19900214					ug/L	<	10	10
FIX-HORS 19900214 ACID EXTRACT 2-METRYL-4, 2-MITTROM-ENDL UG/L < 50 50 50 50 50 50 50 50 50 50 50 50 50					-			
FTA-HOB 19900214 ACID EXTRACT 2-WITROMENDL U9/L < 50 50 FTA-HOB 19900214 ACID EXTRACT PERTACHCROMENDL U9/L < 50 50 FTA-HOB 19900214 ACID EXTRACT PERTACHCROMENDL U9/L < 50 50 FTA-HOB 19900214 ACID EXTRACT PERTACHCROMENDL U9/L < 10 10 FTA-HOB 19900214 ACID EXTRACT PERTACHCROMENDL U9/L < 10 10 FTA-HOB 19900214 ACID EXTRACT PERTACHCROMENDL U9/L < 0.04 .04 FTA-HOB 19900214 PESTICIDES ALDRIN U9/L < 0.05 .03 .03 .03 FTA-HOB 19900214 PESTICIDES B-BHC U9/L < 0.05 .03 .03 .03 FTA-HOB 19900214 PESTICIDES B-BHC U9/L < 0.06 .06 FTA-HOB 19900214 PESTICIDES U9/L < 0.06 .06 FTA-HOB 19900214 PESTICIDES U9/L < 0.04 .04 FTA-HOB 19900214 PESTICIDES U9/L < 0.04 .04 FTA-HOB 19900214 PESTICIDES U9/L < 0.04 .04 FTA-HOB 19900214 PESTICIDES U9/L < 0.04 .04 FTA-HOB 19900214 PESTICIDES U9/L < 0.04 .04 FTA-HOB 19900214 PESTICIDES U9/L < 0.04 .04 FTA-HOB 19900214 PESTICIDES U9/L < 0.04 .04 FTA-HOB 19900214 PESTICIDES U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.07 .09 U9/L < 0.		_						
FIA-MOB 19900214				•				
FIA-NOS 19900214 ACID EXTRACT PENTACHICROPHENDS Ug/L < 50 50 50 FIA-NOS 19900214 ACID EXTRACT 2,4,5-TRICHLORGHENDS Ug/L < 10 10 10 FIA-NOS 19900214 ACID EXTRACT 2,4,5-TRICHLORGHENDS Ug/L < 10 10 10 FIA-NOS 19900214 PESTICIDES ALDRIN Ug/L < .04 .04 .04 .04 .05 FIA-NOS 19900214 PESTICIDES B-BNC Ug/L < .05 .06 .06 FIA-NOS 19900214 PESTICIDES B-BNC Ug/L < .06 .06 .06 FIA-NOS 19900214 PESTICIDES B-BNC Ug/L < .06 .06 .06 FIA-NOS 19900214 PESTICIDES B-BNC Ug/L < .06 .06 .06 FIA-NOS 19900214 PESTICIDES B-BNC Ug/L < .06 .06 .06 FIA-NOS 19900214 PESTICIDES B-BNC Ug/L < .04 .04 .04 .04 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05		_			_			
FIA-MOS 19900214 ACID EXTRACT PREEDL US/L < 10 10 10 FTA-MOS 19900214 ACID EXTRACT 2,4,5-TRICHLORCHEWOW US/L < 10 10 FTA-MOS 19900214 PESTICIDES ALDRIM US/L < 0.04 .04 .04 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	FTA-MO8				-			
FTA-H08 19900214 PESTICIDES ALBRIT 4,4-100 19740.			ACID EXTRACT		-			
FTA-MOB 19900214 PESTICIDES				2,4,5-TRICHLORGPHENDL	-	<	16	
FTA-H08 1990214 PESTICIDES					ug/L	<	. 04	.04
FTA-H08 19900214 PESTICIDES 9-BNC Ug/L < .09 .09 .09 .09 .09 .09 .09 .09 .09 .09					ug/L			.03
FTA-MOB 19900214 PESTICIDES GMCDDAME Ug/L < .04 .04 .04 .04 .04 .04 .04 .04 .04 .04					-			
FTA-MOS				_	_			
FTA-MOS 19900214 PESTICIDES 4,4-100B Ug/L < .11 .11 .11 .11 .11 .11 .11 .11 .11 .								
FTA-H03 1990214 PESTICIDES 4,4-DB U9/L 12 10 FTA-H08 1990214 PESTICIDES 1,4-DB U9/L 12 17 FTA-H08 1990214 PESTICIDES DIELDRIN U9/L 12 17 FTA-H08 1990214 PESTICIDES ENDOSURAN I U9/L 14 14 FTA-H08 1990214 PESTICIDES ENDOSURAN I U9/L 16 16 FTA-H08 1990214 PESTICIDES ENDOSURAN I U9/L 16 16 FTA-H08 1990214 PESTICIDES ENDOSURAN I U9/L 16 16 FTA-H08 1990214 PESTICIDES ENDOSURAN I U9/L 16 16 FTA-H08 1990214 PESTICIDES ENDOSURAN I U9/L 16 16 16 FTA-H08 1990214 PESTICIDES ENDOSURAN I U9/L 16 16 16 FTA-H08 1990214 PESTICIDES ENDOSURAN I U9/L 10 10 FTA-H08 1990214 PESTICIDES ENDOSURAN I U9/L 10 10 FTA-H08 1990214 PESTICIDES ENDOSURAN I U9/L 10 10 FTA-H08 1990214 PESTICIDES ENDOSURAN I U9/L 10 10 FTA-H08 1990214 PESTICIDES HEPTACHOR U9/L 18 18 18 18 18 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	FTA-MG8				-			
FTA-NOB 19900214 PESTICIDES JIELDRIM UG/L < .02 .02 .02 .02 .02 .02 .02 .02 .02 .02	FTA-NGS	19900214			-			
FTA-H08			PEST/CIDES					
FTA-MOB 19900214 PESTICIDES ENOGULFAN II U9/L < .06 .06 .66 .66 .66 .66 .66 .66 .66 .66				DIELDRIN	-	<		
FTA-M08 19900214 PESTICIDES EMOSULFAN SALFATE UJ/L < .06 .66 FTA-M08 19900214 PESTICIDES EMOSULFAN SALFATE UJ/L < .06 .66 FTA-M08 19900214 PESTICIDES EMOSULFAN SALFATE UJ/L < .06 .06 FTA-M08 19900214 PESTICIDES EMOSULFAN SALFATE UJ/L < .03 .03 FTA-M08 19900214 PESTICIDES EMPTACHLOR UJ/L < .03 .03 FTA-M08 19900214 PESTICIDES MEPTACHLOR UJ/L < .03 .03 FTA-M08 19900214 PESTICIDES MEPTACHLOR UJ/L < .03 .03 FTA-M08 19900214 PESTICIDES MEMOLYCHIOR UJ/L < .1 .1 FTA-M08 19900214 PESTICIDES MEMOLYCHIOR UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T222 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T222 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T222 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T224 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T225 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T226 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T226 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T226 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T226 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T226 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T226 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T226 UJ/L < .1 .1 FTA-M08 19900214 PCB PCB PCB-T226 UJ/L < .1 .1 FTA-M08 19900214 FENTATIVELY COM PCB-T226 UJ/L < .2.4 FTA-M08 19900214 TENTATIVELY COM PCB-T226 UJ/L < .2.4 FTA-M08 19900214 TENTATIVELY COM PCB-T226 UJ/L < .2.4 FTA-M08 19900214 SUUR COMP 1,2-DICHLOROTHANE-D4-S X UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELY COM PCB-T226 UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELY COM PCB-T226 UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELORENEE UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELORENEE UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELORENEE UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELORENEE UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELORENEE UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELORENEE UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELORENEE UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELORENEE UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELORENEE UJ/L < .2.6 FTA-M08 19900214 SUUR COMP TENTATIVELORENEE UJ/L < .2.6 FTA-M08 1					ug/L	<		.14
FTA-MOB 19900214 PESTICIDES ENDRIN ADDREVOE Ug/L < .06 .06 .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07					-			
FTA-MOB 19900214 PESTICIDES ENDRIN ACDENTOE Ug/L < .23 .225 FTA-MOB 19900214 PESTICIDES NEPTACHLOR COUPL < .03 .035 FTA-MOB 19900214 PESTICIDES NEPTACHLOR EPOKIDE Ug/L < .03 .035 FTA-MOB 19900214 PESTICIDES NEPTACHLOR EPOKIDE Ug/L < .03 .035 FTA-MOB 19900214 PESTICIDES NEPTACHLOR EPOKIDE Ug/L < .10 .13 FTA-MOB 19900214 PESTICIDES NETWORK EPOKIDE Ug/L < .11 .17 FTA-MOB 19900214 PCB PCB PCB-123Z Ug/L < .11 .17 FTA-MOB 19900214 PCB PCB PCB-123Z Ug/L < .11 .17 FTA-MOB 19900214 PCB PCB PCB-123Z Ug/L < .11 .17 FTA-MOB 19900214 PCB PCB PCB-123Z Ug/L < .11 .17 FTA-MOB 19900214 PCB PCB PCB-123Z Ug/L < .11 .17 FTA-MOB 19900214 PCB PCB PCB-123Z Ug/L < .11 .17 FTA-MOB 19900214 PCB PCB PCB-123Z Ug/L < .11 .17 FTA-MOB 19900214 PCB PCB PCB-123Z Ug/L < .11 .17 FTA-MOB 19900214 PCB PCB PCB-123Z Ug/L < .11 .17 FTA-MOB 19900214 PCB PCB PCB-123Z Ug/L < .11 .17 FTA-MOB 19900214 PCB PCB PCB PCB-123Z Ug/L < .11 .17 FTA-MOB 19900214 TENTATIVELY COM CIS-1,2-DICHLOROSTHAME Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP CIS-1,2-DICHLOROSTHAME Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TOUGH-0B-S X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TOUGH-0B-S X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TOUGH-0B-S X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TOUGH-0B-S X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TOUGH-0B-S X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TOUGH-0B-S X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP PENCHUS X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TOUGH-0B-S X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP PENCHUS X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP PENCHUS X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP PENCHUS X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TEMPOREMENE Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TEMPOREMENE Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP PENCHUS X Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TEMPOREMEN Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TEMPOREMEN Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TEMPOREMEN Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TEMPOREMEN Ug/L VOA 21 0 FTA-MOB 19900214 SURR COMP TEMPOREMEN Ug/L VOA 21 0 FTA-MOB	-							
FTA-MOB 19900214 PESTICIDES NEPTACHLOR U9/L < .03 .03 .03			_		-			
FTA-MOB 1990214 PESTICIDES MEPTACHLOR EPOKIDE Ug/L < 1.83 .83 .83 .83 .83 .83 .83 .83 .83 .83	BON-ATT				_			
FTA-MOB 19900214 PCS FICIDES METWATCHLOR UG/L < 1.8 1.8 1.8 17A-MOB 19900214 PCS FCS-1016 UG/L < 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1			PESTICIDES					
FTA-M08 19900214 PCB PCB-1221 Ug/L < .1 .1 .1 FTA-M08 19900214 PCB PCB-1232 Ug/L < .1 .1 .1 FTA-M08 19900214 PCB PCB-1232 Ug/L < .1 .1 .1 FTA-M08 19900214 PCB PCB-1242 Ug/L < .1 .1 .1 FTA-M08 19900214 PCB PCB PCB-1242 Ug/L < .1 .1 .1 FTA-M08 19900214 PCB PCB PCB-1242 Ug/L < .1 .1 .1 FTA-M08 19900214 PCB PCB PCB-1248 Ug/L < .1 .1 .1 FTA-M08 19900214 PCB PCB PCB-1246 Ug/L < .1 .1 .1 FTA-M08 19900214 PCB PCB PCB-1260 Ug/L < .2 .4 .2 .4 FTA-M08 19900214 PCB PCB PCB-1260 Ug/L < .2 .4 .2 .4 FTA-M08 19900214 PCB PCB-1260 Ug/L < .2 .4 .2 .4 FTA-M08 19900214 FENTATIVELY COM DICALCRO TETRAFLUDROCTMAKE Ug/L VOA 21 .0 FTA-M08 19900214 SURR COMP DICALCRO TETRAFLUDROCTMAKE Ug/L VOA 21 .0 FTA-M08 19900214 SURR COMP TOLUER-D8-S X Ug/L 43.4 50 FTA-M08 19900214 SURR COMP TOLUER-D8-S X Ug/L 44.6 .5 50 FTA-M08 19900214 SURR COMP A-BIOMOFLUOROSEMENE-S X Ug/L 47.1 50 FTA-M08 19900214 SURR COMP A-BIOMOFLUOROSEMENE-S X Ug/L 47.1 50 FTA-M08 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 28 50 FTA-M08 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 28 50 FTA-M08 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 28 50 FTA-M08 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 28 50 FTA-M08 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 31.4 100 FTA-M08 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 31.4 100 FTA-M08 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 44 100 FTA-M08 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 44 100 FTA-M08 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 41 100 FTA-M09 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 41 100 FTA-M09 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 41 100 FTA-M09 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 41 100 FTA-M09 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 41 100 FTA-M09 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 41 100 FTA-M09 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 41 100 FTA-M09 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 41 100 FTA-M09 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 41 100 FTA-M09 19900214 SURR COMP 2-FLUOROBIPMENTL-S X Ug/L 41 100 FTA-M09 19900214 SURR COMP 2-FLUOROBIPMENTL-				METHICKECHLOR		•		
FTA-MOS 1990214 PCS PCS PCS-123Z Ug/L < .1 .1 .1 FTA-MOS 1990214 PCS PCS PCS-123Z Ug/L < .1 .1 .1 FTA-MOS 1990214 PCS PCS PCS-124Z Ug/L < .1 .1 .1 FTA-MOS 1990214 PCS PCS PCS-124Z Ug/L < .1 .1 .1 FTA-MOS 1990214 PCS PCS PCS-124Z Ug/L < .1 .1 .1 FTA-MOS 1990214 PCS PCS PCS-124Z Ug/L < .1 .1 .1 FTA-MOS 1990214 PCS PCS PCS-126Z Ug/L < .1 .1 .1 FTA-MOS 1990214 PCS PCS PCS-126Z Ug/L < .1 .1 .1 FTA-MOS 1990214 PCS PCS PCS-126Z Ug/L < .1 .1 .1 FTA-MOS 1990214 PCS PCS PCS-126Z Ug/L < .1 .1 .1 FTA-MOS 1990214 TENTATIVELY COM CIS-1,2-DICHLOROETHAME Ug/L VOA 21 .0 FTA-MOS 1990214 SURR COMP 1,2-DICHLOROETHAME Ug/L VOA 21 .0 FTA-MOS 1990214 SURR COMP 1,2-DICHLOROETHAME Ug/L VOA 21 .0 FTA-MOS 1990214 SURR COMP TOILUES-BS X Ug/L 43.4 50 FTA-MOS 1990214 SURR COMP A-BRIMOFLUORUEEWEERS X Ug/L 44.6 50 FTA-MOS 1990214 SURR COMP A-BRIMOFLUORUEEWEERS X Ug/L 47.1 50 FTA-MOS 1990214 SURR COMP NITROBENZEWE-DS-S X Ug/L 27.1 50 FTA-MOS 1990214 SURR COMP TENPHENTL-O14 X Ug/L 28.5 50 FTA-MOS 1990214 SURR COMP TENPHENTL-O14 X Ug/L 28.3 .0 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 31.4 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 31.4 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 31.4 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 31.4 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 31.4 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 44.0 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 43.9 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 44.0 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 43.9 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 43.9 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 44.0 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 43.8 10 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 43.0 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 43.0 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 43.0 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 43.0 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 44 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 43.0 100 FTA-MOS 1990214 SURR COMP PENCH-DS-S X Ug/L 43.0 100 FTA-MOS 1990214 S					ug/L	<	, 1	.1
FTA-MOS 19900214 PCS PCS-1242 Ug/L < .1 .1 .1 FTA-MOS 19900214 PCS PCS-1248 Ug/L < .1 .1 .1 FTA-MOS 19900214 PCS PCS-1248 Ug/L < .1 .1 .1 FTA-MOS 19900214 PCS PCS PCS-1260 Ug/L < .1 .1 .1 FTA-MOS 19900214 PCS PCS PCS-1260 Ug/L < .1 .1 .1 FTA-MOS 19900214 PCS PCS PCS-1260 Ug/L < .1 .1 .1 FTA-MOS 19900214 PCS-11CIDES TCKAPHENE Ug/L < .2.6 2.4 FTA-MOS 19900214 TENTATIVELY COM CIS-1,2-DICHLOROCTHANE Ug/L VOA 21 .0 FTA-MOS 19900214 TENTATIVELY COM CIS-1,2-DICHLOROCTHANE Ug/L VOA 21 .0 FTA-MOS 19900214 SURR COMP TOLUCRE-186-S X Ug/L								
FTA-MOS	_				_			
FTA-MOB 19900214 PCB PCB PCB-T256 Ug/L < .1 .1 FTA-MOB 19900214 PCB PCB PCB-T2560 Ug/L < .1 .1 FTA-MOB 19900214 PESTICIDES TOWARNENE Ug/L < 2.6 2.4 FTA-MOB 19900214 TENTATIVELY COM DICHLORO TETRAFLUOROCTHANE Ug/L VOA 21 .0 FTA-MOB 19900214 TENTATIVELY COM CIS-1,2-DICHLOROCTHANE Ug/L VOA 21 .0 FTA-MOB 19900214 SURR COMP 1,2-DICHLOROCTHANE-OB-S X Ug/L	FTA - MG8							
FTA-MOB 1990214 PCS FTA-MOB 1990214 PESTICIDES TOXAPHENE UG/L < 2.4 2.4 2.4 2.4 1990214 PESTICIDES TOXAPHENE UG/L < 2.4 2.4 2.4 2.4 1990214 FENTATIVELY COM DICKLORO TETRAFLUORCETHANE UG/L < 2.4 2.4 2.4 2.4 1990214 TENTATIVELY COM DICKLORO TETRAFLUORCETHANE UG/L VOA 21 0 1990214 TENTATIVELY COM CIS-1,2-DICKLORGETHENE UG/L VOA 21 0 1990214 SURR COMP TOLUGECHENE UG/L VOA 21 0 1990214 SURR COMP TOLUGECHENE UG/L VOA 21 0 1990214 SURR COMP A-BROMOFLUORDEREZENE-S X UG/L 43.4 50 1990214 SURR COMP A-BROMOFLUORDEREZENE-S X UG/L 47.1 50 1990214 SURR COMP A-BROMOFLUORDEREZENE-S X UG/L 21.1 50 1990214 SURR COMP 2-FLUOROBIPMENTL-S X UG/L 28 50 1990214 SURR COMP TENPHENTL-014 X UG/L 28 3 0 1990214 SURR COMP PENEL-D6-S X UG/L 28.3 0 1990214 SURR COMP PENEL-D6-S X UG/L 31.4 100 1990214 SURR COMP PENEL-D6-S X UG/L 31.4 100 1990214 SURR COMP PENEL-D6-S X UG/L 31.4 100 1990214 SURR COMP PENEL-D6-S X UG/L 31.4 100 1990214 SURR COMP PENEL-D6-S X UG/L 31.4 100 1990214 SURR COMP PENEL-D6-S X UG/L 31.4 100 1990214 SURR COMP PENEL-D6-S X UG/L 31.4 100 1990214 SURR COMP PENEL-D6-S X UG/L 31.4 100 1990214 SURR COMP C-FLUOROPHENDL-S X UG/L 44 100 1970214 SURR COMP C-FLUOROPHENDL-S X UG/L 53.9 100 100 100 100 100 100 100 100 100 10		19900214						
FTA-MO8 1990214 PESTICIDES TOWAREM UG/L 4 2.4 2.4 FTA-MO8 1990214 TENTATIVELY COM CIS-1,2-DICHLORGETHENE UG/L VOA 21 0 FTA-MO8 1990214 SURR COMP 1,2-DICHLORGETHENE UG/L VOA 21 0 FTA-MO8 1990214 SURR COMP 1,2-DICHLORGETHENE UG/L VOA 21 0 FTA-MO8 1990214 SURR COMP 1,2-DICHLORGETHENE UG/L VOA 21 0 FTA-MO8 1990214 SURR COMP TOLUTE-B-8 % UG/L 43.4 50 FTA-MO8 1990214 SURR COMP A-BRIMOFLUORDERVENE-S % UG/L 47.1 50 FTA-MO8 1990214 SURR COMP NITROBENZENE-S % UG/L 28 50 FTA-MO8 1990214 SURR COMP 2-FLUOROBIPHENTL-S % UG/L 28 50 FTA-MO8 1990214 SURR COMP TENPHENTL-D14 % UG/L 28.3 0 FTA-MO8 1990214 SURR COMP TENPHENTL-D14 % UG/L 28.3 0 FTA-MO8 1990214 SURR COMP PHENCL-D6-S % UG/L 31.4 100 FTA-MO8 1990214 SURR COMP PHENCL-D6-S % UG/L 44 100 FTA-MO8 1990214 SURR COMP 2-FLUOROBIPHENTL-D14 % UG/L 46.0 100 FTA-MO8 1990214 SURR COMP 2-FLUOROBIPHENTL-D14 % UG/L 46.0 100 FTA-MO8 1990214 SURR COMP 2-FLUOROBIPHENTL-D14 % UG/L 46.0 100 FTA-MO8 1990214 SURR COMP 2-FLUOROBIPHENTL-D14 % UG/L 46.0 100 FTA-MO8 1990214 SURR COMP 2-FLUOROBIPHENTL-D14 % UG/L 46.0 100 FTA-MO8 1990214 SURR COMP 2-FLUOROBIPHENTL-D14 % UG/L 46.0 100 FTA-MO8 1990214 BASE/MEUTRAL EX 1,2-DIPHENTLNORAZINE UG/L 46.0 100 FTA-MO9 1990214 PHYSICAL DN DATE			PC8	PCB-1260	_			
FTA-MOB 1990214 TENTATIVELY COM CIS-1, 2-DICHLORGETHENE UG/L VOA 21 0 FTA-MOB 1990214 SURR COMP 1, 2-DICHLORGETHENE UG/L 43.4 50 FTA-MOB 1990214 SURR COMP TOLUGGETHENE UG/L 43.4 50 FTA-MOB 1990214 SURR COMP TOLUGGETHENES X UG/L 46.6 50 FTA-MOB 1990214 SURR COMP 4-BROMOFLUORDREWZENES X UG/L 47.1 50 FTA-MOB 1990214 SURR COMP NITROBEWZENE-DS-S X UG/L 21.1 50 FTA-MOB 1990214 SURR COMP 2-FLUORORIPWENT-S X UG/L 28.3 0 FTA-MOB 1990214 SURR COMP TENPHENTL-D14 X UG/L 28.3 0 FTA-MOB 1990214 SURR COMP PENENTL-D14 X UG/L 28.3 0 FTA-MOB 1990214 SURR COMP PENENTL-D14 X UG/L 31.4 100 FTA-MOB 1990214 SURR COMP 2-FLUORORIPWENDL-S X UG/L 31.4 100 FTA-MOB 1990214 SURR COMP 2,4,6-TRIBHOMM/HENOL-D4-S X UG/L 63.9 100 FTA-MOB 1990214 BASE/HEUTRAL EX 1,2-DIPHENVLNTDRAZINE UG/L 63.9 100 FTA-MOP 1990214 PHYSICAL COMDUCTIVITY UMBOS 83 0 FTA-MOP 1990214 PHYSICAL COMDUCTIVITY UMBOS 83 0 FTA-MOP 1990214 PHYSICAL COMDUCTIVITY UMBOS 83 0 FTA-MOP 1990214 PHYSICAL COMDUCTIVITY UMBOS 83 0 FTA-MOP 1990214 METALS AMSIMOLY UG/L 30 30 FTA-MOP 1990214 METALS ASSENIC UG/L 31.8 0 FTA-MOP 1990214 METALS ASSENIC UG/L 30 30 FTA-MOP 1990214 METALS ASSENIC UG/L 30 30 FTA-MOP 1990214 METALS ASSENIC UG/L 31 1 FTA-MOP 1990214 METALS ASSENIC UG/L 31 1 FTA-MOP 1990214 METALS CARDIUM UG/L 3 5 FTA-MOP 1990214 METALS CARDIUM UG/L 3 5 FTA-MOP 1990214 METALS CARDIUM UG/L 3 5 FTA-MOP 1990214 METALS CARDIUM UG/L 3 5 FTA-MOP 1990214 METALS CARDIUM UG/L 3 5 FTA-MOP 1990214 METALS CARDIUM UG/L 3 5 FTA-MOP 1990214 METALS CARDIUM UG/L 3 6 FTA-MOP 1990214 METALS CARDIUM UG/L 3 6 FTA-MOP 1990214 METALS CARDIUM UG/L 3 6 FTA-MOP 1990214 METALS CARDIUM UG/L 3 6 FTA-MOP 1990214 METALS CARDIUM UG/L 3 6 FTA-MOP 1990214 METALS CARDIUM UG/L 3 6 FTA-MOP 1990214 METALS CARDIUM UG/L 3 6 FTA-MOP 1990214 METALS CARDIUM UG/L 3 6 FTA-MOP 1990214 METALS CARDIUM UG/L 3 6 FTA-MOP 1990214 METALS UG/L 3 6 FTA-MOP 1990214 METALS UG/L 3 6 FTA-MOP 1990214 METALS UG/L 3 6 FTA-MOP 1990214 METALS UG/L 3 6 FTA-MOP 1990214 METALS UG/L 3 6 FTA-MOP 1990214 METALS UG/L 3 6 FTA-MOP 1990214 METALS UG/L 3 6 F						4	2.4	
FTA-MOS 19900214 SURR COMP 1,2-DICHLROETMAKE-D4-S X Ug/L 43.4 50 FTA-MOS 19900214 SURR COMP TOLUCESC-DS-S X Ug/L 46.6 50 FTA-MOS 19900214 SURR COMP 4-BROMOFLUORDERZENE-S X Ug/L 47.1 50 FTA-MOS 19900214 SURR COMP 11TROBENZENE-S X Ug/L 21.1 50 FTA-MOS 19900214 SURR COMP NITROBENZENE-S X Ug/L 28.3 0 FTA-MOS 19900214 SURR COMP 2-FLUOROSIPMENTC-S X Ug/L 28.3 0 FTA-MOS 19900214 SURR COMP TERPHENTC-D14 X Ug/L 28.3 0 FTA-MOS 19900214 SURR COMP PHENCL-D6-S X Ug/L 31.4 100 FTA-MOS 19900214 SURR COMP 2-FLUOROMEMOL-S X Ug/L 31.4 100 FTA-MOS 19900214 SURR COMP 2-FLUOROMEMOL-S X Ug/L 31.4 100 FTA-MOS 19900214 SURR COMP 2-FLUOROMEMOL-S X Ug/L 63.9 100 FTA-MOS 19900214 BASE/MEUTEAL EX 1,2-DIPMENTHENOL-D6-S X Ug/L 63.9 100 FTA-MOS 19900214 PHYSICAL DN Dh 5.45 0 FTA-MO9 19900214 PHYSICAL COMDUCTIVITY Umbos 83 0 FTA-MO9 19900214 PHYSICAL COMDUCTIVITY Umbos 83 0 FTA-MO9 19900214 PHYSICAL COMDUCTIVITY Umbos 83 0 FTA-MO9 19900214 METALS AESENIC Ug/L < 30 30 FTA-MO9 19900214 METALS AESENIC Ug/L < 1 1 FTA-MO9 19900214 METALS AESENIC Ug/L < 1 1 FTA-MO9 19900214 METALS AESENIC Ug/L < 1 1 FTA-MO9 19900214 METALS BRENTLIUM Ug/L < 1 1 FTA-MO9 19900214 METALS CARMIUM Ug/L < 1 1 FTA-MO9 19900214 METALS CARMIUM Ug/L < 1 1 FTA-MO9 19900214 METALS CARMIUM Ug/L < 1 1 FTA-MO9 19900214 METALS CARMIUM Ug/L < 1 0 10 FTA-MO9 19900214 METALS CARMIUM Ug/L < 1 0 10 FTA-MO9 19900214 METALS CARMIUM Ug/L < 1 0 10 FTA-MO9 19900214 METALS CARMIUM Ug/L < 1 0 10 FTA-MO9 19900214 METALS CARMIUM Ug/L < 1 0 10 FTA-MO9 19900214 METALS CARMIUM Ug/L < 1 0 10 FTA-MO9 19900214 METALS CARMIUM Ug/L < 1 0 10 FTA-MO9 19900214 METALS CARMIUM Ug/L < 30 30 FTA-MO9 19900214 METALS CARMIUM Ug/L < 2 2					_			
FTA-MOS						ACV		
FTA-MOS 19900214 SURR COMP 4-BROMOFLUORDREWZENE-S X Ug/L 47.1 50 FTA-MOS 19900214 SURR COMP NITROBENZENE-S X Ug/L 21.1 50 FTA-MOS 19900214 SURR COMP 2-FLUOROBIPMENYL-S X Ug/L 28.3 0 FTA-MOS 19900214 SURR COMP TERPMENYL-014 X Ug/L 28.3 0 FTA-MOS 19900214 SURR COMP PHENCL-06-S X Ug/L 31.4 100 FTA-MOS 19900214 SURR COMP PHENCL-06-S X Ug/L 31.4 100 FTA-MOS 19900214 SURR COMP 2-FLUOROBIPMENDL-S X Ug/L 63.9 100 FTA-MOS 19900214 SURR COMP 2,4,6-TRIBROMFNENDL-S X Ug/L 63.9 100 FTA-MOS 19900214 BASE/MEUTRAL EX 1,2-DIPMENYLNTDRAZINE Ug/L 4 10 10 FTA-MOS 19900214 PHYSICAL COMDUCTIVITY Umbos 83 0 FTA-MO9 19900214 PHYSICAL COMDUCTIVITY Umbos 83 0 FTA-MO9 19900214 PHYSICAL COMDUCTIVITY Umbos 83 0 FTA-MO9 19900214 PHYSICAL COMDUCTIVITY Ug/L 4 30 30 FTA-MO9 19900214 METALS AMETIMORY Ug/L 4 30 30 FTA-MO9 19900214 METALS AMETIMORY Ug/L 4 5 5 5 FTA-MO9 19900214 METALS AMETIMORY Ug/L 4 1 1 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 5 5 5 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 10 10 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 1 1 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 10 10 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 10 10 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 10 10 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 10 10 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 10 10 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 10 10 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 10 10 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 10 10 FTA-MO9 19900214 METALS CACHIUM Ug/L 4 2 2 2								
### FTA-MOS								
FTA-MO8 19900214 SLAR COMP 2-FLUOROBIPMENTL-S % ug/L 28 50 FTA-MO8 19900214 SLAR COMP TENPMENTL-014 % ug/t 28.3 0 FTA-MO8 19900214 SURR COMP PENCL-06-S % ug/L 31.4 100 FTA-MO8 19900214 SURR COMP 2-FLUOROBIPMENTL-S % ug/L 31.4 100 FTA-MO8 19900214 SURR COMP 2-FLUOROBIPMENTL-S % ug/L 44 100 FTA-MO8 19900214 SURR COMP 2.4,6-TRIBOMAPHENDL-S % ug/L 63.9 100 FTA-MO8 19900214 BASE/MEUTRAL EX 1,2-DIPMENVLNYDRAZIME	FTA-MOS			The state of the s				
FTA-MOS 19900214 SURG COMP TENPHENT-014 % Ug/L 28.3 0 FTA-MOS 19900214 SURR COMP PHENCL-06-S % Ug/L 31.4 100 FTA-MOS 19900214 SURR COMP 2-FLUOROMEMOL-S % Ug/L 44 100 FTA-MOS 19900214 SURR COMP 2,4,6-TRIBROMENHENOC-04-3 % Ug/L 63.9 100 FTA-MOS 19900214 BASE/HEUTRAL EX 1,2-DIPHENYLHYDRAZINE Ug/L 70 10 10 FTA-MOS 19900214 PHYSICAL PM Physical Physical Physical Comductivity Umbos 83 0 FTA-MOS 19900214 PHYSICAL TEMPERATURE deg C 13.8 0 FTA-MOS 19900214 PHYSICAL TEMPERATURE deg C 13.8 0 FTA-MOS 19900214 METALS AMITMONY Ug/L 30 30 FTA-MOS 19900214 METALS ASSENTE Ug/L 1 1 FTA-MOS 19900214 METALS BERTLLIUM Ug/L 1 1 FTA-MOS 19900214 METALS BERTLLIUM Ug/L 1 1 FTA-MOS 19900214 METALS CARMIUM Ug/L 1 1 FTA-MOS 19900214 METALS CARMIUM Ug/L 1 1 FTA-MOS 19900214 METALS CARMIUM Ug/L 1 10 10 FTA-MOS 19900214 METALS CARMIUM Ug/L 2 5 5 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOS 19900214 METALS WERGURY Ug/L 30 30		19700214						
FTA-MOB 19900214 SURR COMP PHENCL-B6-S X Ug/L 31.4 100 FTA-MOB 19900214 SURR COMP 2-FLLUDROPMENDL-S X Ug/L 63.9 100 FTA-MOB 19900214 SURR COMP 2,4,6-TRIBROMAPHENDL-D6-S X Ug/L 63.9 100 FTA-MOB 19900214 BASE/MEUTRAL EX 1,2-DIPHENYLHYBRAZINE Ug/L 10 10 FTA-MOP 19900214 PHYSICAL DM ph 5.45 3 FTA-MOP 19900214 PHYSICAL COMOUCTIVITY Umbos 83 0 FTA-MOP 19900214 PHYSICAL FEMPERATURE deg C 13.8 0 FTA-MOP 19900214 METALS AMILHMONY Ug/L 30 30 FTA-MOP 19900214 METALS AMILHMONY Ug/L 30 30 FTA-MOP 19900214 METALS AESENIC Ug/L 1 1 FTA-MOP 19900214 METALS RETILIUM Ug/L 1 1 FTA-MOP 19900214 METALS CARMIUM Ug/L 5 5 FTA-MOP 19900214 METALS CARMIUM Ug/L 1 1 FTA-MOP 19900214 METALS CARMIUM Ug/L 10 10 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30 FTA-MOP 19900214 METALS CARMIUM Ug/L 30 30								
FTA-MOS 19900214 SURN CLOMP 2,4,6-TRIBROMENENCE.94-3 % ug/L 63.9 100 FTA-MOS 19900214 BASE/MEUTRAL EX 1,2-DIPHENVENDERZINE Ug/L 10 10 FTA-MO9 19900214 PHYSICAL DM ph 5.45 3 FTA-MO9 19900214 PHYSICAL COMOUCTIVITY Umbos 83 0 FTA-MO9 19900214 PHYSICAL TEMPERATURE deg C 13.8 0 FTA-MO9 19900214 METALS ARITHMONY Ug/L 30 30 FTA-MO9 19900214 METALS ARITHMONY Ug/L 30 30 FTA-MO9 19900214 METALS ARSENIC Ug/L 3 1 FTA-MO9 19900214 METALS BERYLLIUM Ug/L 3 1 FTA-MO9 19900214 METALS CARMIUM Ug/L 3 5 FTA-MO9 19900214 METALS CARMIUM Ug/L 3 5 FTA-MO9 19900214 METALS CARMIUM Ug/L 3 5 FTA-MO9 19900214 METALS CARMIUM Ug/L 3 1 FTA-MO9 19900214 METALS CARMIUM Ug/L 3 1 FTA-MO9 19900214 METALS COMPER Ug/L 3 10 10 FTA-MO9 19900214 METALS COMPER Ug/L 3 10 30 FTA-MO9 19900214 METALS LEAD Ug/L 3 30 30 FTA-MO9 19900214 METALS LEAD Ug/L 3 30 30 FTA-MO9 19900214 METALS LEAD Ug/L 3 2 2					X ug/L		31.4	
### FTA-MOS 19900214 BASE/MEUTRAL EX 1,2-DIPHENVLNYDRAZINE UJ/L < 10 10 10 10 19900214 PHYSICAL DM ph ph 5.45 3 10 110 110 110 110 110 110 110 110 11								100
FTA-MO9 19900214 PHYSICAL DM ph 5.45 0 FTA-MO9 19900214 PHYSICAL COMOUCTIVITY Umbos 83 0 FTA-MO9 19900214 PHYSICAL EMPERATURE deg C 13.8 0 FTA-MO9 19900214 METALS AMITHMOLY Ug/L < 30 30 FTA-MO9 19900214 METALS AESENIC Ug/L < 1 1 FTA-MO9 19900214 METALS RETLLIM Ug/L < 1 1 FTA-MO9 19900214 METALS CAPNIUM Ug/L < 5 5 FTA-MO9 19900214 METALS CAPNIUM Ug/L < 5 5 FTA-MO9 19900214 METALS CAPNIUM Ug/L < 10 10 FTA-MO9 19900214 METALS CAPNIUM Ug/L < 10 10 FTA-MO9 19900214 METALS CAPNIUM Ug/L < 10 10 FTA-MO9 19900214 METALS CAPNIUM Ug/L < 30 30 FTA-MO9 19900214 METALS CAPNIUM Ug/L < 30 30 FTA-MO9 19900214 METALS CAPNIUM Ug/L < 30 30 FTA-MO9 19900214 METALS LEAD Ug/L < 30 30 FTA-MO9 19900214 METALS LEAD Ug/L < 2.2				• •				
FTA-M09				•		<		
FTA-MO9 1990C214 PHYSICAL TEMPERATURE deg C 13.8 0 FTA-MO9 1990C214 METALS AMITMOUY UG/L < 30 30 FTA-MO9 1990C214 METALS AMSENIC UG/L < 1 1 FTA-MO9 1990C214 METALS BREYLLUM UG/L < 1 1 FTA-MO9 1990C214 METALS CARMIUM UG/L < 5 5 FTA-MO9 1990C214 METALS CARMIUM UG/L < 10 10 FTA-MO9 1990C214 METALS CARMIUM UG/L < 10 10 FTA-MO9 1990C214 METALS CUPPER UG/L < 10 10 FTA-MO9 1990C214 METALS CUPPER UG/L < 10 10 FTA-MO9 1990C214 METALS CUPPER UG/L < 30 30 FTA-MO9 1990C214 METALS LEAD UG/L < 30 30 FTA-MO9 1990C214 METALS LEAD UG/L < 2.2				•				
FTA-MO9 19900214 METALS AMITHORY Ug/L < 30 30 FTA-MO9 19900214 METALS ASSENTC Ug/L < 1 1 1 FTA-MO9 19900214 METALS BERTLEUM Ug/L < 1 1 1 FTA-MO9 19900214 METALS CARMIUM Ug/L < 5 5 5 FTA-MO9 19900214 METALS CARMIUM Ug/L < 10 10 FTA-MO9 19900214 METALS CARMIUM Ug/L < 10 10 FTA-MO9 19900214 METALS CROMEUM Ug/L < 10 10 FTA-MO9 19900214 METALS COPPER Ug/L < 10 10 FTA-MO9 19900214 METALS COPPER Ug/L < 30 30 FTA-MO9 19900214 METALS LEAD Ug/L < 30 30 FTA-MO9 19900214 METALS MERCURY Ug/L < .2 .2								
FTA-M09 19900214 METALS ASSEMIC UG/L < 1 1 FTA-M09 19900214 METALS BERTLIUM UG/L < 1 1 FTA-M09 19900214 METALS CARMIUM UG/L < 5 5 FTA-M09 19900214 METALS CHROMIUM UG/L < 5 5 FTA-M09 19900214 METALS CHROMIUM UG/L < 10 10 FTA-M09 19900214 METALS CDPPER UG/L < 10 10 FTA-M09 19900214 METALS LEAD UG/L < 30 30 FTA-M09 19900214 METALS LEAD UG/L < 30 30 FTA-M09 19900214 METALS MERCURY UG/L < 2 .2					-	•		
FTA-MOV 1990)214 METALS BERYLLIUM UG/L < 1 1 FTA-MOV 1990)214 METALS CARMIUM UG/L < 5 5 FTA-MOV 1990)214 METALS CARMIUM UG/L < 10 10 FTA-MOV 1990)214 METALS COPPER UG/L < 10 10 FTA-MOV 1990)214 METALS COPPER UG/L < 30 30 FTA-MOV 1990)214 METALS LEAD UG/L < 30 30 FTA-MOV 1990)214 METALS MERCURY UG/L < .2 .2								
FTA-MO9 19900214 METALS CMEDMEUM Ug/L < 10 10 FTA-MO9 19900214 METALS CDMPER Ug/L < 10 10 FTA-MO9 19900214 METALS CDMPER Ug/L < 30 30 FTA-MO9 19900214 METALS LEAD Ug/L < 30 30 FTA-MO9 19900214 METALS MERCURY Ug/L < .2 .2			-			<	1	
FTA-MO9 19900214 METALS COPPER U9/L < 10 10 FTA-NO9 19900214 METALS LEAD U9/L < 30 30 FTA-MO9 19900214 METALS MERCURY U9/L < .2 .2								
FTA-NO9 19900214 METALS LEAD Ug/L < 30 30 FTA-NO9 19900214 METALS MERCURY Ug/L < ,2 ,2					-			
17A-MG9 19900214 METALS MERCURY Ug/L < .2 .2								
674.MCQ 10000014	FTA-NO9							
	FTA-HC9	19900214				-		

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO9	19960214	METALS	SELENIUM	ug/L	<	2	2
FTA-MOP	19930214	METALS	SILVER	ug/L		10	10
FTA-MO9	19900214	METALS	MULLIART	ug/L	<	10	10
FTA-NG9	19900214	METALS	ZINC	ug/L		26	5
FTA-MO9	19900214	HERBICIDES ANAL	2,4-0	ug/L	<	50	50
FTA-HG9	19900214	HERBICIDES AWAL	2,4,5-1	ug/L	<	50	50
FTA-MO9	19900214	HERBICIDES ANAL	2,4,5-TP (SILVEX)	ug/L	<	50	50
FTA-H09	19900214	PURGEABLE COMPO	ACROLEIM	ug/L	<	10	10
FTA-HC9	19900214	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-M09	19900214	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
FTA-MO9 FTA-MO9	19900214 19900214	PURGEABLE COMPO PURGEABLE COMPO	BROMOFORM	ug/L	<	. 5	5
FTA-MO9	19900214	PURCEABLE COMPO	BRONCHETHANE	ug/L	<	10	10
FTA-MO9	19900214	PURGEABLE COMPO	CARBON TETRACHLORIDE CHLOROBENZENE	ug/L	<	5	5
FTA-HO9	19900214	PURSEABLE COMPO	CHLORODI3ROMONETHANE	ug/L	< <	5 5	5 5
FTA-HU9	19900214	FURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L ug/L	ά.	5	5
FTA - HOS	19900214	PURGEABLE COMPO	CHLOROETHANE	ug/L	` `	10	10
FTA-HOS	19900214	PURGEABLE COMPO	CHLOROFORM	ug/L		5	5
FTA-MO9	19900214	PURGEABLE COMPO	CHLOPOMETHANE	ug/L		10	10
FTA-H09	19900214	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L	<	5	5
FTA-H09	19900214	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
FTA-MO9	14900214	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
FTA-MO9	19900214	PURGEABLE COMPO	1,4-DICHLGROBENZERE	ug/L	<	5	5
FTA- x39	19900214	PURGEABLE COMPO	1,1-DICHLURGETHANE	ug/l.	<	5	5
FTA-HG9	19900214	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-HO9	19900214	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	<	5	5
FTA-MO9 FTA-MO9	19900214 19900214	PURGEABLE COMPO	TRANS-1,2-DICHLCROETHENE	ug/L	<	5	5
FTA-MO9	19900214	PURGEABLE COMPO PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
FTA-HO9	19900214	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-H09	19900214	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE	ug/L	۲	į	5
FTA-HO9	19900214	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	< <	5 10	5
FTA-MO9	19900214	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L ug/L	~	5	10 \$
FTA-MO9	19900214	PURCEAPLE COMPO	TETRACHLOROETHENE	ug/L	έ	Ś	5
FTA-MO9	19900214	PURGEABLE COMPO	TOLUENE	ug/L	· .	Ś	5
FTA-HO9	19900214	PURGEABLE COMPO	1,1,1-TRICHLORDETHINE	ug/L		14.9	5
FTA-MO9	19900214	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	Š
FTA-MO9	19900214	PURGEABLE COMPO	TRICHLOROETHENE	ug/L		17.7	5
FTA-HO9	17700214	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-MÚ9	19900214	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
FTA-M09 FTA-M09	19900214 19900214	BASE/NEUTRAL EX	ACENAPHTHENE	ug/i.	<	10	10
FTA-HO9	19900214	BASE/NEUTRAL EX	ACENAPHTHYLENE	ug/L	<	10	10
FTA-MOP	19900214	BASE/HEUTRAL EX BASE/HEUTRAL EX	ANTHRACENE	ug/L	<	10	10
5TA-M09	19900214	BASE/NEUTRAL EX	BENZIDINE	ug/L	•	50	50
FTA-1409	19900214	BASE/HEUTRAL EX	BENZO(a)ANTHRACENE BENZO(b)FLUORANTHENE	ug,"	«	10	10
FTA-MO9	19900214	BASE/NEUTRAL EX	BENZO(k)FLUORANTHENE	ug/L		10 10	10
FTA-HO9	19900214	BASE/NEUTRAL EX	BENZO(A)PYRENE	ug/L ug/L	``	10	10 10
FTA-MO9	19900214	BASE/NEUTRAL EX	BENZO(g,h,i)PERYLENE	ug/L		10	10
FTA-MO9	19900214	BASE/HEUTRAL EX	BUTYLBENZYLPHTHALATE	ug/L		10	10
FTA-HO9	19900214	BASE/NEUTRAL EX	4-SROMOPHENYL PHENYL ETHER	ug/L	<	10	10
FTA-HU9	19700214	BASE/WEUTRAL EX 1	BIS(2-CHLORGETHYL)ETHER	ug/L	<	10	10
FTA-HO9	19900214	BASE/NEUTRAL EX	#15(2-CHLOROETHYOXY) WETHANE	ug/L	<	10	10
FTA-MO9	19900214	BASE/NEUTRAL EX	BIS/2-ETHYLHEXYL)PHTHALATE	ug/L	<	10	10
FTA-MG9	19900214	BASE/NEUTRAL EX	BIS(2-CHLOROISOPROPYL)ETHER	ug/L	<	10	10
FTA-MOD	19900214	BASE/HEUTRAL EX	2-CHEORONAPHTHALENE	ug/L	<	10	10
FTA-HO9 FTA-HU9	19900214 19900214	BASE/HEUTRAL EX BASE/HEUTRAL EX	4-CHLOROPHENYL PHENYL ETHER	ug/L	•	10	10
FTA-MO9	19900214	RASE/NEUTRAL EX	CHRYSENE	ug/L	<	10	10
FTA-HC9	19900214	BASE/HEUTRAL EX	DIBENZO(a, h)ANTHRACENE	ug/L	•	10	10
FTA NG9	19905214	PURGEABLE COMPO	DI-M-BUTYLPHTHALATE 1,2-DICHLOROBENZENE	ug/L	•	10	10
FTA-MO9	19900214	PURGEABLE COMPO	1,3-010HE0ROBEHZEHE	ug/t	*	10	10
FTA-H09	19900214	PURGEABLE COMPO	1,4-DICHLOROBERZERE	ug/L	٠	10	10
FTA-MO9	19900214	BASE/HEUTRAL EX	3,3-DICHLOROBERZERE	ug/L	< <	10 20	10
FTA-MO9	19900214	BASE/NEUTRAL EX	DIETHYL PHTHALATE	ug/L	· ·	20 10	20
FTA-MO9	19900214	BASE/NEUTRAL EX	DIMETHYL PATHALATE	ug/L ug/L	•	10	10 10
FTA-HO9	17900214	BASE/WEUTRAL EX	2,4-DINITROTOLUENE	ug/L	ì	10	10
F14-H09	19920214	BASE/HEUTRAL EX	2,6-01HTROLOLUENS	ug/L		10	10
FTA MO9	19900214	BASE/HEUTRAL EX	DI-N-OCTYLPHTHALATE	ug/L	<	10	10

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO9	19900214	BASE/NEUTRAL EX	DIOXIN(2,3,7,8-TCDD)	ug/L	~·····	0	0
FTA-MO2	19900214	BASE/NEUIRAL EX	FLUORANTHENE	ug/L	Č	10	10
FTA-H09	19900214	BASE/NEUTRAL EX	FLUORENE	ug/L	<	10	10
FTA-MO9	19900214	BASE/NEUTRAL EX	HEXACHLOROBENZENE	u3/L	<	10	10
FTA-M09 FTA-M09	19900214 19900214	BASE/NEUTRAL EX	HEXACHLOROSUTADIENE	ug/L	<	10	10
FTA-HU9	19900214	BASE/NEUTRAL EX	HEXACHLOROCYCLOPENTAD LENE	ug/L	<	10	10
FTA-H09	19900214	BASE/NEUTRAL EX BASE/NEUTPAL EX	HEXACHLOROETHANE	ug/L	•	10	10
FTA-H09	19900214	BASE/NEUTRAL EX	INDENO(1,2,3-c,d)PYRENE ISOPHORONE	ug/L	<	10	10
FTA-HO9	19900214	BASE/NEUTRAL EX	NAPHTHALENE	ug/L ug/L	< <	10 10	10 10
FTA-MU9	19900214	BASE/NEUTRAL EX	MITROBENZENE	ug/L	` `	10	10
FTA-KO9	19900214	BASE/NEUTRAL EX	N-NITROSO-DI-METHYLAMINE	ug/L		10	10
FTA-NO9	19900214	BASE/NEUTPAL EX	N-NITROSO-DI-PHENYLAMINE	ug/L	<	10	10
FTA-H09	19900214	BASE/NEUTPAL EX	N-NITROSO-DI-N-PROPYLAMINE	ug/L	<	10	10
FTA-M09 FTA-M09	19900214	BASE/NEUTRAL EX	PHENANTHRENE	ug/L	<	10	10
FEATHOR	19900214 19900214	BASE/NEUTRAL EX	PYRENE	ug/L	<	10	10
FTA -HO9	19900214	BASE/NEUTRAL EX	1,2,4-TRICHLOROBENZENE	ug/L	<	10	10
FTA-MO9	19900214	ACID EXTRACT ACID EXTRACT	4-CHLORO-3-METHYLPHENOL	ug/L	<	10	10
FTA-MU9	19900214	ACID EXTRACT	2,4-01CHLOROPHENOL	ug/L	<	10	10
FTA-MO9	19900214	ACID EXTRACT	2,4-DIMETHYUPHENOL 2,4-DINITROPHENOL	ug/L	<	10	10
FTA-HO9	19900214	ACID EXTRACT	2-METHYL-4,6-DIMITROPHEMOL	ug/L	«	50	50
FTA-MO9	19900214	ACID EXTRACT	2-NITROPHENOL	ug/L		50	50
FTA-MC9	19900214	ACID EXTRACT	4-NITROPHENGL	ug/L ug/L		10 50	10 50
FTA-MO9	19900214	ACID EXTRACT	PENTACHLOROPHENOL	ug/L	`	50	50
FTA-MO9	19900214	ACID EXTRACT	PHENOL	ug/L		10	10
FTA-MO9	19900214	ACID EXTRACT	2,4,5-TRICHEDROPHENOL	ug/L	<	10	10
FTA-MO9	19900214	PESTICIDES	ALDRIH	ug/L	•	.04	.04
FTA-H09 FTA-H09	19900214	PESTICIDES	a-BHC	ug/L	<	.03	.03
FTA-MC9	19900214 19900214	PESTICIDES	p-sac	ug/L	<	.06	.06
FTA-MO9	19900214	PESTICIDES PESTICIDES	g-BHC	Ug/L	<	.09	. 09
FTA-MG9	19900214	PESTICIDES	G-BHC Chlordane	ug/t	<	.04	.04
STA-MO9	19900214	PESTICIDES	4,41-000	ug/L ug/L	< <	.14	. 14
FTA-MO9	19900214	PESTICIDES	4.41-DOE	ug/L	₹	.04	. ! 1 .04
FTA-HO9	19900214	PESTICIDES	4,41-00T	ug/L	<	.12	.12
FTA-HO9	19900214	PESTICIDES	DISLORIM	ug/L	ť	.02	.02
FTA-MC9	19900214	PESTICIDES	ENDOSULFAN I	ug/L	<	.14	. 14
FTA-MO9 FTA-MO9	19900214 19900214	PESTICIDES	ENDOSULFAN 11	ug/L	<	.04	. 04
FTA-MOS	19900214	PESTICIDES PESTICIDES	ENDOSULFAN SULFATE	Hg/L	<	.66	, 66
FTA-MO9	19906214	PESTICIDES	ENDRIN ALDER OF	ug/l	«	.06	.06
FTA-NG9	19900214	PESTICIDES	ENDRIM ALDEHYDE HEPTACHLOR	ug/L	<	.23	. 23
FTA-MO9	19900214	PESTICIOES	HEPTACHLOR EPOXIDE	ug/L	•	.03	.03
FTA-#09	19900214	PESTICIDES	METHOXYCHLOR	ug/L ug/L	«	.83 1.8	.83
FTA-MC9	19900214	PCB	PC3 - 1016	ug/L	· `	. 1	1.8
FTA-HU9	19900214	PCB	PC3-1221	ug/L	· ·	. 1	. 1
FTA-MO9	19900214	PC8	PC8-1232	Ug/L	<	. 1	. 1
FT4-MG9	19900214	PCB	PC8-1242	ug/L	<	1	. i
F1.4-M09	19900214	PCB	PCB-1248	ug/L	<	. 1	. 1
FTA-M09 FTA-M09	19900214 19900214	PCB CCB	PCa-1254	ug/L	4	.1	.1
FTA-MO9	19900214	PC8	PCB-1260	いる/し	<	. 1	. !
FTA-MO9	19900214	PESTICIDES SURR COMP	CXAPMENE 1,2-DICHLOROETHANE-D4-S	ug/L	<	2.4	2.4
FTA-MO9	19700214	SUPR COMP	TOLULME-D8-S	% ug/L % ug/L		39.7	50
FTA-MO9	19900214	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		46.3 47	50
FTA-MO9	19900214	SURR COMP	NITROBENZENE-05-S	% ug/L		21.6	50 50
FTA-MO9	19900214	SURR COMP	2-FLUOROBIPHENYL-S	% ug/L		30.1	50
FTA-NOÝ	19900214	SURR COMP	TERPHENYL-014	≒ ug/L		29.3	50
FTA-NG9 FTA-NG9	19900214	SURR COMP	PHENOL-06-S	% ug/L		26.9	100
FTA-MU9	19900214 19900214	SURR COMP	2-FLUCROPHENGL-S	% ug/L		38.4	100
FTA HOS	19900214	SURR COMP	2,4,6-TR18ROMOPHENCE-04-S	% ug/L		69.7	100
FTA-M10	19900214	BASE/NEUTRAL EX PHYSICAL	1,2-DIPHENTURGAZINE	us/L	<	10	10
FTA-M10	19900214	PHYSICAL	PH	ph 		6.27	0
FTA-H10	19900214	PHYSICAL	COMBUCTIVITY TEMPERATURE	umhox		25	0
FTA-H10	19900214	METALS	PACIFICATIONS TO A STATE OF THE	deg C ug/L	•	13.3	0 7.5
FTA-H10	19900214	METALS	ARSENIC	ug/L	4	30 1	3ù 1
FTA-M10	19900214	METALS	BERYLLIUM	ug/L	ì	1	<u>'</u>

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-M10	19900214	METALS	CADMIUM	ug/L	<	5	5
FTA-H10	19900214	METALS	CHROMEUM	ug/L	<	10	10
FTA-M10	19900214	METALS	COPPER	ug/L	<	10	10
FTA-M10 FTA-M10	19900214 19900214	METALS	LEAD	ug/L	<	30	30
FTA-H10	19900214	METALS METALS	MERCURY	ug/L	<	.2	.2
FTA-M10	19900214	METALS	NICKEL SELENIUM	ug/L ug/L	«	15 2	15 2
FTA-M10	19900214	METALS	SILVER	ug/L	~	10	10
FTA-M10	19900214	METALS	THALLIUM	ug/L	<	10	10
FTA-M10	19700214	METALS	ZINC	ug/L		13.2	5
FTA-M10	19900214	HERBICIDES ANAL	2,4-0	ug/L	<	50	50
FTA-M10 FTA-M10	19900214 19900214	HERBICIDES ANAL HERBICIDES ANA!	2,4,5-7	ug/L	<	50	50
FTA-H10	19900214	PURGEABLE COMPO	2,4,5-TP (SILVEX) ACROLEIN	ug/L v≈/i	< <	50 10	50
FTA-M10	19900214	PURGEABLE COMPO	ACRYLONITRILE	ug/i. ug/i.	``	10	10 10
FTA-M10	19900214	PURGEABLE COMPO	BENZEKE	ug/L	<	5	5
FTA-M10	19900214	PURGEABLE COMPO	. BROMOFGRM	ug/L	<	5	5
FYA-H10	19900214	PURGEABLE COMPO	BROMCHETHANE	ug/L	<	10	10
FTA-M10 FTA-M10	19900214 19900214	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-M10	19900214	PURGEABLE COMPO	CHLOROGIBROMOMETHAXE	ug/L	< <	5 5	5
FTA-M10	19900214	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L ug/L	~	5	5 5
FTA-M10	19900214	PURGEABLE COMPO	CHLOROETHANE	ug/L	ζ.	10	10
FTA-H10	19900214	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-M10	19900213	PURCEABLE COMPG	CYLOROMETHANE	ug/L	<	10	10
FTA-M10 FTA-M10	19900214 19900214	PURGEABLE COMPO	DICHLOROBROMETHANE	ug/L	<	5	5
FTA-#10	19900214	PURGEABLE COMPO	1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE	ug/L	۷	5	5
FTA-H10	19900214	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L ug/L	«	5 5	5 5
FTA-M10	19900214	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	ì	5	5
FTA-M10	19900214	PURGEABLE COMPO	1,2-DICHLORDETHANE	ug/L	<	5	5
FTA-M10	19900214	PURGENBLE COMPO	1,1-DICHLOROETHENE	ug/L	<	5	5
FTA-M10 FTA-M10	19900214 19900214	PURGEABLE COMPO	TRANS-1, 2-DICHLOROETHENE	ug/L	<	5	5
FTA-M10	19700214	PURGEABLE COMPO PURGEABLE COMPO	1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE	ug/L	•	5	5
FTA-M10	19900214	PURGEABLE COMPO	TRAMS-1,3-DICHLOROPROPENE	ug/L ug/L	«	5 5	5 5
FTA-M10	19900214	PURGEABLE COMPO	ETHYLBENZENE	ug/L		Ś	5
FTA-M10	19900214	PUPGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-M10 FTA-M10	19900214 19900214	PUPGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	<	5	5
- FTA-H10	19900214	PURGEABLE COMPO PURCEABLE COMPO	TETRACHLOROETHENE	ug/L	•	5	5
FTA-M10	19900214	PURGEABLE COMPO	TOLUENE 1,1,1-TRICHLOROETHANE	ug/L	< <	5 5	5
FTA-H10	19900214	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L ug/L	,	5	5 5
FTA-M10	19900214	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	à	Ś	5
FTA-M10	19900214	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-H10	19900214	PURGEABLE COMPO	ALMAT CHESKIDE	ug/L	<	10	10
FTA-M10 FTA-M10	19900 <u>2</u> 14 19900 <u>2</u> 14	X3 JARTUHK\BEAE KA JARTUHK\BEAE	ACEMAPHTHENE	U6/L	<	10	10
FTA-#10	19900214	BASE/NEUTRAL EX	ACEHAPHTHYLENE ANTKRACENE	ug/L	٠	10 10	10
FTA-N10	19900214	BASE/WEUTRAL EX	BENZIOINE	ug/L ug/L	«	50	10 50
FTA-M10	19900214	BASE/NEUTRAL EX	BENZO(a)ANTHRACENE	ug/L	<	10	10
FIA-HIO	19900214	BASE/HEUTRAL EX	BENZO(b)FLUORANTHENE	ug/L	<	10	10
FTA-M10 FTA-M10	19900214 19900214	BASE/NEUTRAL EX	BENZO(k) FLUORANTHENE	ug/L	<	10	10
FTA-H10	19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	BENZO(#)PYPENE BENZO(g,h,i)FERYLENE	ug/L	<	10	10
FTA-M10	19900214	BASE/HEUTRAL EX	BUTYLBENZYLPHTHALATE	ug/L ug/L	< <	10 10	10 10
FTA-M10	19900214	BASE/NEUTRAL EX	4-BROMOPHENYL PHENYL ETHER	ug/L	λ.	10	10
FTA-M10	19900214	BASE/HEUTRAL EX	BIS(2-CHLOROSTHYL)ETHER	ug/L		10	10
FTA-H10	19900214	BASE/WEUTRAL EX	BIS(2-CHLOROETHYOXY)METHANE	ug/L	<	10	10
FTA-MTC FTA-MTG	19900214	BASE/MEUTRAL EX	BIS(2-ETHYLHEYYL)PHTHALATE	ug/L	<	10	10
FIA-MIQ	19900214	BASE/HEUTRAL EX BASE/HEUTRAL EX	#ISC2-CHLOROTSOPROPYL)ETHER	ug/L	•	10	10
FTA-H10	19900214	BASE/NEUTRAL EX	2-CHLORONAPHTHALENE 4-CHLOROPHENYL PHENYL ETHER	ug/L	< <	10	10
FTA-MIG	19900214	BASE/HEUTRAL SY	CHRASENE	ug/L ug/L	•	10 10	10 10
FTA-M10	19900214	BASE/HEUTRAL EX	DIBENZO(a, h) ANTHRACENE	ug/L		10	10
FTA-M10	19900214	BASE/WEUTPAL EX	DI-N-BUTYLPHTHALATE	ug/L	<	10	10
FTA-M10 FTA-M10	19900214 19900214	PURGEABLE COMPO	1,2-DICHLOROBEUZEUE	ug/L	<	10	10
FTA-M10	19900214	PURGEABLE COMPO PURGEABLE COMPO	1,3-DICHLORCHENZENE 1,4-DICHLOROBENZENE	ug/L	<	10	10
		. and care county	1,4 DIGHELMONES ESSE	ug/L	<	10	10

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-M10	19900214	BASE/NEUTRAL EX	3,3-DICHLORGBENZIDINE	Ug/L	<	20	20
FTA-H10	19900214	BASE/NEUTRAL EX	DIETHYL PHTHALATE	ug/L	<	10	10
FTA-M10	19900214	BASE/NEUTRAL EX	DIMETHYL PHYMALATE	ug/L	<	10	10
FTA-M10	19900214	BASE/NEUTRAL EX	2.4-DINITROTOLUENE	ug/L	<	10	10
FTA-M10 FTA-M10	19900214	BASE/NEUTRAL EX	2,6-DINITROLOLUENE	ug/L	< <	10	10
FTA-M10	19906214 19900214	BASE/NEUTRAL EX	DI-N-OCTYLPHTHALATE	ug/L	<	10	10
FTA-M10	19900214	BASE/NEUTRAL EX	D10X1N(2,3,7,5-TCDD)	ug/L	<	0	0
FTA-H10	19900214	BASE/NEUFRAL EX BASE/NEUTRAL EX	FLUCRANTHENE	ug/L	<	10	10
FTA-M10	19900214	BASE/NEUTRAL EX	FLUCRENE	ug/L	<	10	10
FTA-M10	19900214	BASE/NEUTRAL EX	HEXACHLOROBENZENE HEXACHLOROBUTADIENE	ug/L	<	10	10
FTA-M10	19900214	BASE/NEUTRAL EX	HEXACHLOROCYCLOPENTAGIENE	ug/Ł	< <	10	10
FTA-M10	19900214	BASE/NEUTRAL EX	HEXACHLORGETHANE	ug/L	``	10 10	10
FTA-M10	19900214	BASE/NEUTRAL EX	INDENO(1,2,3-c,d)PYRENE	ug/L ug/L	` `	10	10 10
FTA-M10	19900214	BASE/NEUTRAL EX	ISOPHORONE	ug/L		10	10
FTA-M10	19900214	BASE/NEUTRAL EX	NAPHTHALENE	ug/L		10	10
FTA-M10	19900214	BASE/NEUTRAL EX	NITROSENZEHE	ug/L		10	10
FTA-M10	19900214	BASE/NEUTRAL EX	N-NITROSO-DI-METHYLANINE	ug/L	· •	10	10
FTA-M10	19900214	BASE/NEUTRAL EX	H-HITROSO-DI-PHENYLANINE	ug/L	•	10	10
FTA-M10	19900214	BASE/NEUTPAL EX	N-NITROSO-DI-N-PROPYLAGINE	ug/L	<	10	10
FTA-M10	19900214	BASE/NEUTRAL EX	PHEHANTHRENE	ug/L	<	10	10
FTA-H10	19900214	BASE/NEUTRAL EX	PYRENE	ug/L	<	10	10
FTA-M10	19900214	BASE/NEUTRAL EX	1,2,4-TRICHLORCBENZENE	ug/L	<	10	10
FTA-M10	19900214	ACID EXTRACT	4-CHLORO-3-MEYHYLPHENOL	ug/L	<	10	10
FTA-H10	19900214	ACID EXTRACT	2,4-DICHLOROPHENOL	ug/t	<	10	10
FTA-M10	19900214	ACID EXTRACT	2,4-DIMETHYLPHENOL	ug/L	<	10	10
FTA-M10 FTA-M10	19900214	ACID EXTRACT	2,4-DINITROPHENOL	ug/L	<	50	50
FTA-M10	19900214 19900214	ACID EXTRACT	2-METHYL-4,6-DIMITROPHENOL	ug/L	<	50	50
FTA-M10	19900214	ACID EXTRACT ACID EXTRACT	2-NITROPHENOL	ug/L	<	10	10
FTA-H10	19900214	ACID EXTRACT	4-NETROPHENOL	Jg/L	<	50	50
FTA-M10	19900214	ACID EXTRACT	PENTACHLOROPHENOL	vg/i	<	50	50
FTA-M10	19900214	ACID EXTRACT	PHENOL 2,4,5-TRICHLOROPHENOL	ug/L	<	10	10
FTA-#10	19900214	PESTICICES	AEDRIM	ug/L	<	10	10
FTA-M10	19900214	PESTICIDES	a-BHC	ug/L	< <	.04	.04
FTA-M10	19900214	PESTICIDES	b-suc	ug/L ug/L	•	.03 .06	.03 ბი,
FTA-M10	19906214	PESTICIDES	g-8#C	ug/L	à	.00	.09
FTA-M10	19900214	PESTICIDES	d-BHC	ug/L	₹	.04	,04
FTA-M10	19900214	PESTICIDES	CHLORDANE	ug/L		- 14	.14
FTA-M10	19900214	PESTICIDES	4,41-000	ug/L	<	.11	.11
FTA-M10	19900214	PESTICIDES	4,47-00E	ug/L	<	.04	.04
FTA-H10	19900214	PESTICIDES	4,4°-BOT	ug/L	<	. 12	,12
FTA-M10	19900214	PESTICIDES	DIELDRIN	ug/L	<	.02	.02
FTA-M10	19900214	PESTICIDES	ENCOSUL FAM 1	ug/L	<	. 14	.14
FTA-H10	19900214	PESTICIDES	ENDOSULFAN []	ug/L	<	.04	.04
FTA-M10	19900214	PESTICIDES	ENDOSULFAM SULFATE	Ug/L	<	. 66	.66
FTA-#10 FTA-#10	19900214 19900214	PESTICIDES	ENDRIM	ug/L	<	.06	.06
FTA-M10	19900214	PESTICIDES	ENDRIN ALDEHYDE	ug/L	<	.23	.23
FTA-H10	19900214	PESTICIDES PESTICIDES	HERTACHUM TE FORMER	ug/L	∢	. 03	.03
FTA-N10	19900214	PESTICIDES	HEPTACHLOR EPOXIDE	ug/L	<	.83	.83
FTA-M10	19900214	PCB	METHGXYCHLOR PCB-1016	ug/L	<	1.8	1.8
FTA-H10	19900214	PC3	PCB-1221	ug/L ug/L	* *	. 1	. ;
FTA-M10	19900214	PCB	PC3-1232	ug/L	λ.	.1	.1
FTA-M10	19900214	PCB	PC8-1242	ug/L	₹	: ;	.1
FTA-M10	19900214	PCB	PC8-1248	ug/L	*	ij	. ;
FTA-M10	19900214	PCB	PCB-1254	ug/i	•	. 1	. 1
FTA-M10	19900214	PC 9	PCS-126G	ug/L	<	, i	ij
FTA-H10	19700214	PESTICIDES	TOXAPHENE	ug/L	•	2.4	2.4
FTA-M10 FTA-M10	19900214 19900214	SURR COMP	1,2-DICHLOROETHANE-04-S	% ug/L		41.7	50
F7A-M10	19900214	SURR COMP	TOEUENE-D8 S	% ug/L		49	50
FTA-M10	19900214	SURR COMP	4-BRONOFLUOROSENZENE-S	% ug/L		48.2	50
FTA-N10	19900214	SURR COMP	NITROSENZENE-OS-S	% ug/L		20,9	50
FTA-NIC	19900214	SURR COMP	2-FLUOROBIPHENYL-S	% ug/L		28.5	50
FTA-M10	19900214	SURR COMP	TERPHENYL-014	X ug/L		26.7	50
FTA-N10	19900214	SURR COMP	PHENOL-D6-S	% ug/L		27.2	100
FTA-H10	19900214	SURR COMP SURR COMP	2 - FLUOROPHENOL - S	% ug/L		39	100
FTA-M10	19900214	BASE/HEUTRAL EX	2,4,6-TRIBROMOPHEMOL-04-S	% ug/L		58.1	100
•		Design A CALL CA	1,2.01PHENVEHYDRAZINE	ug/l	∢	10	10

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-H11	19900214	PHYSICAL	pH pH	ph		5.33	0
FTA-M11	19900214	PHYSICAL	CONDUCTIVITY	umhos		50	ŏ
FTA-H11	19900214	PHYSICAL	TEMPERATURE	deg C		14.3	Ŏ
FTA-H11	19900214	METALS	YHOMITHA	ug/L	<	30	30
FTA-H11	19900214	HETALS	ARSENIC	ug/L	<	1	1
FTA-H11	19900214	METALS	BERYLLIUM	ug/L	<	1	1
FTA-H11	19900214	METALS	CADMIUM	ug/L	<	5	5
FTA-M11	19900214	METALS	CHRONIUM	ug/L	<	10	10
FTA-M11 FTA-M11	19900214 19900214	METALS	COPPER	ug/L	<	10	10
FTA-M11	19900214	METALS	LEAD	ug/L	<	30	30
FTA-M11	19900214	METALS	MERCURY	ug/L	<	.2	.2
FTA-M11	19900214	METALS METALS	NICKEL	ug/L		64.2	15
FTA-H12	19900214	METALS	SELENIUM	ug/L	<	2	2
FTA-M11	19900214	METALS	SILVER THALLIUM	∪ ÿ/L	< <	10	10
FTA-M11	19900214	METALS	ZINC	ug/L	•	10 13.8	10 5
FTA-M11	19900214	HERBICIDES ANAL	2,4-0	ug/L ug/L	<	50	50
FTA-M11	19900214	HERBICIDES ANAL	2,4,5-1	ug/L		50	50
FTA-H11	19900214	HERBICIDES ANAL	2,4,5-TP (SILVEX)	ug/L	~	50	50
FTA-H11	19900214	PURGEABLE COMPO	AURGLEIN	ug/L	· .	10	10
FTA-M11	19900214	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-M11	19900214	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
FTA-H11	19900214	PURGEABLE COMPO	BRONGFORM	ug/L	<	5	Ś
FTA-H11	19900214	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
FTA-M11	19900214	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-M11	19900214	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
FTA-M11	19900214	PURGEABLE COMPO	CHLOROD I BROHOMETHANE	ug/L	<	5	5
FTA-M11	19900214	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-M11	19900214	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-M11	19900214	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-H11	19900214	PURGEABLE COMPO	CHLOROMETHANE	ug/L	<	10	10
FTA-H11	19900214 19900214	PURGEABLE COMPO	DICHLOROBROHOMETHANE	Ug/L	<	5	5
FTA-M11 FTA-M11	19900214	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
FTA-M11	19900214	PURGEABLE COMPO PURGEABLE COMPO	1,3-01CHLOROBENZENE	ug/L	∢ .	5	5
FTA-M11	19900214	PURGEABLE COMPO	1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE	ug/L	•	5	5
FTA-M11	19900214	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-H11	19900214	PURGEABLE COMPU	1,1-DICHLOROETHENE	ug/L	«	5 5	5 5
FTA-H11	19900214	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L ug/L	``	5	5
FTA-M11	19900214	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	``	5	5
FTA-M11	19900214	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L		Ś	Ś
FTA-H11	19900214	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L		Ś	Ś
FTA-M11	19900214	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5
FTA-#11	19900214	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-M11	19900214	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	<	5	5
FTA-#11	19900214	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5
FTA-H11	19900214	PURGEABLE COMPS	TOLUENE	9 9/L	<	5	5
FTA-H11	19900214	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5
FTA-M11	19900214	PURGEABLE COMPO	1,1,2-TRICHLORGETHANE	ug/L	<	5	5
FTA-H11	19900214	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
FTA-M11	19900214 19900214	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-M11 FTA-M11	19900214	PURGEABLE COMPO BASE/NEUTRAL EX	VINTL CHLOPIDE	ug/L	<	10	10
FTA-H11	19900214	BASE/NEUTRAL EX	ACENAPHTHENE ACENAPHTHYLENE	ug/L	∢ .	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	ANTHRACENE	va/L	<	10	10
57A-H11	19900214	BASE/NEUTRAL EX	BENZIDINE	ug/L	•	10	10
FTA-H11	19900214	BASE/NEUTRAL EX	BENZO(#)ANTHRACENE	ug/L ug/L	ì	50 10	50 10
FTA-M11	19900214	BASE/NEUTRAL EX	BENZO(b) FLUORANTHENE	ug/L	` ·	10	10
FTA-HT1	19900214	BASE/NEUTRAL EX	BENZO(k)FLUORANTHENE	ug/L		10	10
FTA-H11	19900214	BASE/NEUTRAL EX	BENZO(a) PYRENE	ug/L	À	10	10
FTA-H11	19900214	MASE/NEUTRAL EX	BENZO(g,h,i)PERYLENE	ug/L		10	10
FTA-M11	19900214	BASE/NEUTRAL EX	BUTYLBENZYLPHTHALATE	ug/L	<	10	10
FTA-M11	19906214	BASE/HEUTRAL EX	4-BROMOPHENYL PHENYL ETHER	ug/L	•	10	10
FTA-H11	19900214	BASE/NEUTRAL EX	BIS(2-CHLOROETHYE)ETHER	ug/L	•	10	10
FTA-H11	19900214	BASE/MEUTRAL EX	BIS(2-CHLOROETHYOXT)METHANE	ug/L	<	10	10
FTA-#11	19900214	BASE/NEUTRAL EX	815(2-ETHYLHEXY)PHTHALATE	ug/L	<	10	10
FTA-M11	19900214	BASE/KEUTRAL EX	BIS(2-CHLOROISOPHUPYL)ETHER	uq/L	<	10	10
FTA-M11 FTA-M11	19900214 19900214	BASE/REUTRAL EX	2-CHLORONAPHTHALENE	UQ/L	<	10	10
/ IR 311	, 77006 17	BASE/HFUTRAL EX	4-CHLOROPHENYL PHENYL ETHER	ug/L	<	10	10

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-H11	19900214	BASE/NEUTRAL EX	CHRYSENE	1.g/L	<	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	DIBENZO(a,h)ANTHRACENE	ug/L	<	10	10
FTA-H11	19900214	BASE/NEUTRAL EX	DI-N-BUTYLPHTHALATE	ug/L	<	10	10
FTA-M11	19900214	PURGEABLE COMPO	1,2-DICHLOROSENZENE	ug/L	<	10	10
FTA-M11	19900214	PURGEABLE COMPO	1,3-DICHLOROGENZENE	ug/L	<	10	10
FTA-M11	19906214	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	10	10
FTA:M11 FTA:M11	19900214	BASE/NEUTRAL EX	3,3-DICHLOROBENZIDINE	ug/L	<	20	20
FTA-H11	19900214 19900214	BASE/NEUTRAL EX	DIETHYL PHIHALATE	ug/L	<	10	10
FTA-H11	19900214	BASE/NEUTRAL FX BASE/NEUTRAL EX	DIMETHYL PHTHALATE	ug/L	<	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	2,4-DINITROTOLUENE	ug/L	<	10	10
FTA-H11	19900214	BASE/NEUTRAL EX	2,6-DINITROLOLUENE	ug/L	<	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	DI-N-OCTYLPHTHALATE	ug/L	<	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	DIOXIN(2,3,7,8-TCDD) FLUORANTHENE	ug/L	•	0	0
FTA-H11	19900214	BASE/NEUTRAL EX	FLUGRENE	ug/L	«	10 10	10 10
FTA-M11	19900214	BASE/NEUTRAL EX	BARTHABOROLKSAXAH	ug/L ug/L	٠,	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	HEXACHLOROSUTEDE	ug/L	``	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	HEXACHLOROCYCLOPENTADIENE	ug/L	``	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	HEXACHLOROETHANE	ug/L	ì	10	10
FTA-H11	19900214	BASE/NEUTRAL EX	INDENO(1,2,3-c,d)PYRENE	ug/L		10	10
FTA-M11	19900214	BASE/NEUTRAL EX	ISOPHORONE	ug/L	<	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	NAPHTHALENE	ug/L		10	10
FTA-M11	19900214	9ASE/MEUTRAL EX	NITROBENZENE	ug/L	ė.	10	10
FTA-M11	19900214	BASE/MEUTRAL EX	N-HITROSO-DI-METHYLAMINE	ug/L	<	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	N-NITROSO-DI-PHENYLAMINE	ug/L	<	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	N-NITROSO-DI-N-PROPYLAMINE	ug/L	<	10	10
FTA-M11	19900214	BASE/MEUTRAL EX	PHENANTHRENE	ug/L	<	10	10
FTA-M11	19900214	BASE/NEUTRAL EX	PYRENE	ug/L	<	10	10
FTA-H11	19900214	BASE/NEUTRAL EX	1,2,4-TRICHLOROBENZENE	ug/L	<	10	10
FTA-M11	19900214	ACID EXTRACT	4-CHLORO-3-METHYLPHENOL	ug/L	<	10	10
FTA-M11 FTA-M11	19900214	ACID EXTRACT	2,4-01CHLOROPHENOL	ug/L	<	10	10
FTA-M11	19900214 19900214	ACID EXTRACT	2,4-DIMETHYLPHENOL	ug/L	<	10	10
FTA-M11	19900214	ACID EXTRACT ACID EXTRACT	2,4-0 INITROPHENOL	ug/L	<	50	50
FTA-H11	19900214	ACID EXTRACT	2-METRYL-4,6-DINITROPHENOL	ug/L	<	50	50
FTA-M13	19900214	ACID EXTRACT	2-MITROPHENOL 4-MITROPHENOL	ug/L	< .	10	10
FTA-M11	19900214	ACID EXTRACT	PENTACHLOROPHENOL	ug/L	<	50 50	50
FTA-N11	19900214	ACID EXTRACT	PHENOL	ug/L	< <	50 10	50
FT4-m11	19900214	ACID EXTRACT	2,4,5-TRECHLOROPHENOL	ug/L ug/L	``	10	10 10
FTA-M11	19900214	PESTICIDES	ALDRIN	ug/L	ì	.04	.04
FTA-M11	19900214	PESTICIDES	a-EHC	ug/L	٠,	.03	.03
FTA-N11	19900214	PESTICIDES	b-enc	ug/L	<	.06	.06
FTA-H11	19900214	PESTICIDES	g-8%C	ug/L	<	,09	.09
FTA-M11	19900214	PESTICIDES	d-BHC	ug/L	4	.04	.04
FTA-M11	19900214	PESTICIDES	CHLORDANE	ug/L	<	. 14	. 14
FTA-M11	19900214	PESTICIDES	4,47-000	ug/L	<	.11	.11
FTA-H11	19900214	PESTICIDES	4,41-DDE	ug/L	<	.04	.04
FIR-ATT	19900214	PESTICIDES	4,41-001	ug/L	∢	. 12	. 12
FTA-M11	19900214	PESTICIDES	DIECORTH	u-3/1.	<	.02	.02
FTA-M11 FTA-M11	19900214 19900214	PESTICIDES	ENDOSUL ## !	ug/l.	<	.14	. 14
FTA-M11	19900214	PESTICIDES	ENGOSULFAN 11	ug/L	C	.04	.04
FTA-H11	19900214	PESTICIDES PESTICIDES	ENDOSULFAN SULFATE	ug/L	•	.66	.66
FTA-M11	19900214	PESTICIDES	EMORIN ALDENTOE	ug/L	٠	.06	.06
FTA-M11	19900214	PESTICIDES	HEPTACH CA	ug/L	< <	. 23	.23
FTA-M11	19900214	PESTICIDES	HEPTACHLOP EPONIDE	ug/L ug/L	٠	.03 .83	.03 .83
FTA-M11	19900214	PESTICIDES	METHOXYCHLOR	ug/L		1.8	1.8
FTA: M11	19900214	PC#	PC8-1016	ug/L	•	.1	.1
F:(A:411	19900214	PCS	PC8-1221	Ug/L	· ·	. 1	.1
FTA-H11	19900214	PCB	208-1252	ug/L		;i	. ;
FIA-MIT	19900214	PCS	PCB-1242	ug/L	ė		.i
FTA-M11	19900214	PC#	PC9-1248	ug/L	•	. 1	i i
FTA-M11	19900214	208	PCB-1254	Ug/L	<	. 1	. i
FTA-H11	19900214	PC3	PC8-1260	ug/L	•	, 1	. 1
FTA-M11	19900214	PESTICIDES	TOXAPHENE	ug/L	<	2.4	2.4
FTA-M11	19900214	SURR COMP	1,2-DICKLORGETHANE-04-S	X ug/L		44.8	50
FTA-M11	19900214	SURR COMP	TOLUENE DA-S	¥ ug/L		47.2	50
FTA-N11	19900214	SURN COMP	4-BROMOFLUOROBENZERE-S	% ug/L		47.3	50
FTA-3411	19900214	SURR COMP	HITROBENZENE-05-S	% ug/L		20.1	50

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-X11	19900214	SURR COMP	2-FLUORCBIPHENYL-S	% ug/L		28.8	50
FTA-M11	19900214	SURR COMP	TERPHENYL-014	% ug/L		26.7	50
FTA-M11	19900214	SURR COMP	PHENOL-06-S	% ug/L		19.1	100
FTA-M11	19900214	SURR COMP	2-FLUOROPHENOL-S	% ug/L		29.9	100
FTA-H11	19900214	SURR COMP	2,4,6-TRIBROMOPHENOL-D4-S	% ug/L		55.4	100
FTA-M11	19900214	BASE/NEUTRAL EX	1,2-DIPHENYLHYDRAZINE	ug/s	<	10	100
FTA-H12	19900214	PHYSICAL	Hq	ph:	•	5.92	
FTA-H12	19900214	PHYSICAL	CONDUCTIVITY	umhos		45	0
FTA-M12	19900214	PHYSICAL	TEMPERATURE	deg C		13.7	0 0
FTA-H12	19960214	METALS	ANTIMONY	ug/L	<	30	30
FTA-M12	19900214	METALS	ARSENIC	ug/L	~	1	1
FTA-H12	19900214	METALS	BERYLLIUM	ug/L	` `	i	i
FTA-H12	19900214	METALS	CADMIUN	ug/L	ζ,	Ś	5
FTA-X12	19900214	METALS	CHRONIUM	ug/L	ί.	10	10
FTA-M12	19900214	METALS	COPPER	ug/L	έ	10	10
FTA-M12	19900214	METALS	LEAD	ug/L		30	30
FTA-M12	19900214	METALS	MERCURY	ug/L		.2	.2
FTA-412	19900214	METALS	NICKEL	ug/L	₹	15	15
FTA-H12	19900214	METALS	SELENIUM	ug/L		, 2	, 2
FTA-M12	19900214	METALS	SILVER	ug/L	ζ.	10	- 10
FTA-H12	19900214	METALS	THALLIUM	ug/L	<	10	10
FTA-H12	19900214	METALS	ZINC	Ug/L	•	19.5	5
FTA-M12	19900214	HERBICIDES ANAL	2,4-0	Ug/L	<	50	so
FTA-N12	19900214	HERBICIDES ANAL	2,4,5-T	ug/L	<	50	50
FTA-M12	19900214	HERBICIDES ANAL	2,4,5-TP (SILVEX)	ug/L	<	50	50
FTA-H12	15900214	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA: #12	19900214	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-H12	12900214	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
FTA-H12	19900214	PURGEABLE COMPO	BROMOFORM	ug/L	<	5	5
FTA-H12	19900214	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	19
FTA-H12	19900214	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-H12	19900214	PURGEAPLE COMPO	CHLOROBENZENE	ug/L	<	5	5
FTA-M12	19900214	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L	<	5	5
FTA-M12	19900214	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-M12	19900214	PURGEABLE COMPG	CHLOROETHANE	ug/L	<	10	10
FTA-H12	19900214	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-H12	19900214	PURGEABLE COMPO	CHLOROMETHANE	Ug/L	<	10	10
FTA-H12	19900214	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L	<	5	5
FTA-M12	19900214	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
FTA-M12	19900214	PURGEABLE COMPO	1,3-01CHLOPOBENZEHE	ug/L	<	5	5
FTA-M12	19900214	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	5	5
FTA-M12	19900214	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	<	5	5
FTA-M12 FTA-M12	19900214	PURSEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
-	19960214	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	<	5	5
FTA-M12 FTA-M12	19900214 19900214	PURCEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L	<	5	5
FTA-M12	19900214	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
FTA-M12	19900214	PURGEABLE COMPO	CIS-1,3-01CHLOROPROPENE	ug/L	<	5	5
FTA-H1Z	19900214	PURGEABLE COMPO PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-M12	19900214		ETHYLBENZENE	ug/L	<	5	5
FTA-H12	19900214	PURGEABLE COMPO PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-H12	19900214	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	<	5	5
FTA-H12	19900214	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5
FTA-H12	19900214	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5 5
FTA-M12	19900214	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L		10.6	5
FTA-M12	195'00214	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
FTA-H12	19900216	PURGEABLE COMPO	TRICHLOROSTHENS	ug/L	<	. 5	5
FTA-M12	19900214	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-M12	19900214	BASE/HEUTRAL EX	VINYL CHLORIDE	ug/L	•	10	10
FTA-H12	19900214	BASE/HEUTRAL EX	ACENAPHTHENE ACENAPHTHYLENE	ug/L	<	10	10
FTA-M12	19900214	BASE/HEUTRAL EX		ug/L	•	10	10
FTA-M12	19900214	BASE/HEUTPAL EX	ANTHRACENE REMITTINE	ug/L	•	10	10
FTA-M12	19900214	RASE/HEUTRAL EX	BENZOLANAHTHRACENE	ug/L	<	50	50
FTA-M12	19900214	BASE/HEUTRAL EX	BENZO(B)ANTHRACENE BENZO(b)FLUORANTHENE	ug/L	•	10	10
FTA-H12	19900214	BASE/NEUTRAL EX	BENZO(b)FLUORANTHENE	ug/L	< -	10	10
FTA-H12	19900214	BASE/WEUTRAL EX	BENZO(A)PEUDKANTHENE BENZO(A)PYRENE	ug/L	<	10	10
FTA-H12	19900214	BASE/NEUTRAL EX	BENZO(g,h,i)PERYLENE	ug/L	•	10	10
FTA-H12	19900214	BASE/NEUTRAL EX	BUTYLBENZYLPHTHALATE	ug/L	< <	10	10
FTA-H12	19900214	BASE/HEUTRAL EX	4-SECHOPHENYL PHENYL ETHER	ug/L ug/L	٠,	10 10	10 10
		- -	The state of the s		•	, ,	1 🛈

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-M12	19900214	BASE/NEUTRAL EX	BIS(2-CHLOROETHYL VETHER	ug/L	<	10	10
FTA-M12	19900214	BASE/NEUTRAL EX	BIS(2-CHLOROETHYOXY)METHANE	_3/L		10	10
FTA-M12	19900214	BASE/NEUTRAL EX	BIS(2-ETHYLHEXYL)PHTHALATE	ug/L	<	10	10
FTA-H12	19900214	BASE/NEUTRAL EX	81S(2-CHLOROISOPROPYL)ETHER	ug/L	<	10	10
FTA-M12	19900214	BASE/NEUTRAL EX	2-CHLORONAPHTHALENE	ug/L	<	10	10
FTA-M12	19900214	BASE/NEUTRAL EX	4-CHLOROPHENYL PHENYL EIHER	ug/i	<	10	10
FTA-M12 FTA-M12	19900214 19900214	BASE/NEUTRAL EX	CHRYSENE	ug/L	<	10	10
FTA-H12	19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	GIBENZO(a,h)ANTHRACENE	ug/L	<	10	10
FTA-M12	19900214	PURGEABLE COMPO	DI-N-BUTYEPHTHALATE	Ug/L	<	10	10
FTA-H12	19900214	PURGEABLE COMPO	1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE	ug/L	۲.	10	10
FTA-M12	19900214	PURGEABLE COMPO	1,4-DICHLOROBEHZENE	ug/L	< <	10	10 10
FTA-H12	19900214	BASE/NEUTRAL EX	3,3-DICHLOROBENZIDINE	ug/L ug/L	` `	20	20
FTA-M12	19900214	BASE/NEUTRAL EX	DIETHYL PHIHALATE	ug/L	· ·	10	10
FTA-M12	19900214	BASE/NEUTRAL EX	DIMETHYL PHTHALATE	ug/L	· <	10	10
FTA-H12	19900214	BASE/NEUTRAL EX	2,4-DINITROTOLUENE	ug/L	₹	10	10
FTA-M12	19900214	BASE/MEUTRAL EX	2,6-DINITROLOLUENE	ug/L	<	10	10
FTA-M12	19900214	BASE/NEUTRAL EX	DI-N-OCTYLPHTHALATE	ug/L	<	10	10
FTA-M12	19900214	BASE/NEUTRAL EX	DIOXIN(2,3,7,8-TCDD)	ug/L	<	G	Ö
FTA-H12	19900214	BASE/WEUTRAL EX	FLUORANTHENE	ug/L	<	10	10
FTA-H12	19900214	BASE/NEUTRAL EX	FLUORENE	ug/L	<	10	10
FTA-H12	19900214	BASE/NEUTRAL EX	HEXACHLOROBENZENE	ug/L	<	10	10
FTA-M12	15900214	BASE/NEUTRAL EX	HEXACHLOROBUTAD ! ENE	ug/L	<	10	10
FTA-M12	19960214	BASE/NEUTRAL EX	HEXACHLOROCYCLOPENTAD TENE	ug/L	<	10	10
FTA-H12	19900214	BASE/NEUTRAL EX	HEXACHLORGETHANE	ug/L	<	10	10
FTA-H12	19900214	BASE/NEUTRAL EX	INDENO(1,2,3-c,d)PYRENE	ug/L	<	10	16
FTA-N12 FTA-M12	19900214 19900214	BASE/NEUTRAL EX	ISCPHORONE	ug/L	<	10	10
FTA-M12	19900214	BASE/NEUTRAL EX	NAPHTHALENE	ug/L	•	10	10
FTA-M12	19900214	BASE/NEUTRAL EX BASE/NEUTRAL EX	MITROSENZENE	ug/L	<	10	10
FTA-M12	19900214	BASE/NEUTRAL EX	M-MITROSO-DI-METHYLAMINE M-MITROSO-DI-PHEHYLAMINE	ug/L	<	10	10
FTA-M12	19900214	BASE/WEUTRAL EX	N-NITROSO-DI-N-PROPYLAMINE	ug/L	<	10	10
FTA-H12	19900214	BASE/NEUTRAL EX	PHENANTHRENE	ug/L ug/L	٠,	10 10	10 10
FTA-H12	19900214	BASE/NEUTRAL EX	PYRENE	ug/t	` `	10	10
FTA-H12	19900214	BASE/NEUTRAL EX	1,2,4-TRICHLOROBENZENE	ug/L	` `	10	10
FTA-N12	19900214	ACID EXTRACT	4-CHLORO-3-METHYLPHENOL	ug/L	•	10	10
FTA-M12	19900214	ACID EXTRACT	2,4-01CHLOROPHENOL	ug/L	•	10	10
FTA-H12	19900214	ACID EXTRACT	2,4-DIMETHYLPHENOL	Ug/L	<	10	10
FTA-H12	19900214	ACID EXTRACT	2,4INITROPHENOL	ug/L	•	50	50
FTA-H12	17900214	ACID EXTRACT	S-METHYL-4,6-DINITROPHENOL	ug/L	<	50	50
FTA-H12	19900214	AC'D EXTRACT	2-MITROPHENOL	ug/L	<	10	10
FTA-M12	19900214	ACID EXTRACT	4-NITROPHENOL	ug/L	<	50	50
FTA-H12 FTA-H12	19900214 19900214	ACID EXTRACT	PENTACHLOROPHENOL	ug/L	<	50	50
FTA-M12	19900214	ACID EXTRACT	PHENOL	ug/L	4	10	10
FTA-H12	19900214	ACID EXTRACT PESTICIDES	2,4,5-TRICHLOROPHENOL	ug/L	<	10	10
FTA-M12	19900214	PESTICIDES	ALDRIN	ug/L	<	.04	. 04
FTA-H12	19900214	PESTICIDES	a-BHC b-BHC	ug/L	*	.03	.03
FTA-H12	19900214	PESTICIDES	g- BHC	ug/L	«	.06	.06
FTA-M12	19900214	PESTICIDES	d-8HC	ug/L ug/t		. 09 . 04	.09 .04
FTA-#12	19900214	PESTICIDES	CHLORDANE	ug/L		.14	.14
FTA-H12	19900214	PESTICIDES	4,41.000	ug/L	₹	.11	.11
FTA-H12	19900214	PESTICIOES	4,41-008	ug/L	<	.94	.04
FTA-M12	19900214	PESTICIDES	4,41-DOT	ug/L	<	. 12	.12
FTA-H12 F1A-H12	19900214	PESTICIDES	DIELDRIM	ug/i	<	.02	.02
FTA-H12	19900214 19900214	PESTICIDES	ENDOSUL FAN 1	119/L	•	. 14	. 14
FTA-#12	19900214	PESTICIDES	ENDOSULFAN 11	ug/L	<	.04	.04
FTA-H12	19900214	PESTICIDES PESTICIDES	ENDOSULFAN SULFATE	ug/L	<	.66	.66
FTA-H12	19900214	PESTICIDES	ENGRIM	ug/L		.06	.06
FTA:H12	19960214	PESTICIDES	ENDRIN ALDEHYDE	Ug/L	<	.23	.23
FTA-M12	19900214	PESTICIDES	HEPTACHLOR HEPTACHLOR EPOXIDE	ug/L	·	. 63	. 03
FTA-H12	19900214	PESTICIDES	METHOXYCHLOR	ug/L	•	. 83	. 83
FTA-H12	19960214	PCB	PC8-1016	ug/L	< .	1.8	1.8
FTA-H12	19900214	PCB	PCR 1221	ug/L	4	.1	. 1
FTA H12	19900214	PC8	PCB-1232	ug/L ug/L	₹ (.1	.1
FTA: HTZ	19900214	PC#	PCB-1242	ug/L	•	.1	.1
FTA-M12	19900214	PC3	PC8-1248	ug/L	•	: 1	: 1
FTA-M12	19900214	PCB	PC8-1254	ug/L	₹	, i	

WELL #	DATE	HEADING	PARAMETER	UNIT	VALJE	DET	DET LIM
FTA-H12	19900214	PC8	PCB-1260	ug/L	<	.1	.1
FTA-H12	19900214	PESTICIDES	TOXAPHENE	ug/L	ά	2.4	2.4
FTA-H12	19900214	SURR COMP	1,2-DICHLOROETHANE-D4-S	% ug/L		41.9	50
FTA-H12	19900214	SURR COMP	TOLUENE-D8-S	% ug/L		45.9	50
FTA-M12	19900214	SURR COMP	4-BROMOFLUOROBENZENE-S	≍ ug/L		46.3	50
FTA-H12	19900214	SUKR COMP	NITROBENZENE-D5-S	% ug/L		21.9	50
FTA-M12	19900214	SURR COMP	2-FLUCRGETPHENYL-S	% ug/L		32.8	50
FTA-M12 FTA-M12	19900214	SURR COMP	TERPHENYL-014	% ug/L		30.4	50
FTA-H12	19900214 19900214	SURR COMP SURR COMP	PKENOL-06-S	X ug/L		21	100
FTA-H12	19900214	SURR COMP	2-FLUGROPHENGE-S 2,4,6-TRIBROMOPHENGE-D4-S	% ug/L		32.8	100
FTA-H12	19900214	BASE/NEUTRAL EX	1,2-DIPHENYLHYDRAZINE	% ug/L ug/L	<	69.5 10	100
81040	19900215	PHYSICAL	HQ	ph ph	`	5.79	10 0
81040	19900215	PHYSICAL	COMBUCTIVITY	umhos		60	ŏ
61040	19900215	PHYSICAL	TEMPERATURE	deg C		10.3	ŏ
81040	19900215	METALS	Y4OM1THA	ug/t	<	30	30
81040	19900215	METALS	ARSENIC	ug/l.	<	1	1
U1040	19900215	METALS	BERYLLIUM	ug/L	<	1	1
B1040	19900215	METALS	CACH (LM	ug/l	<	5	5
81040	19900215	METALS	CHROMIUM	ug/L	<	10	10
81040 81040	19900215 19900215	METALS	COMPER	ug:/L		25.5	10
81040	19900215	METALS	LEAD	ug/L	<	30	30
81040	19900215	METALS METALS	MEI FOLDE Y	ug/ L	•	.2	.2
31040	19900215	METALS	NACKEL Selentim	باروب	•	15	15
B1040	19900215	METALS	SILVER	ug/L ug/L	«	2 10	2 10
810-0	19900215	METALS	THELLIAM	og, i	``	10	10
B1040	19900215	METALS	2182	ug, c	•	52.2	5
B1040	19900215	HERRICIDES ANAL	2,**5	und i	<	50	só
B1049	19900215	HERBICIDES ANAL	2,4,5	J 9 /5	<	50	50
B1040	19900215	HERBICIDES ANAL	7,4,5-TP (SILVER)	ug/L	•	50	50
81040	19900215	PURGEABLE COMPO	ACRUM E 1 %	ug/L	<	10	10
B1040	19900215	PURGEABLE COMPO	ACRYLOM/TRILE	ug≓t.	<	10	10
81040 81040	19900215	PURSEABLE COMPO	\$6.02E.m.E	ug, .	<	5	5
B1040	19900215 19900215	PURGEABLE COMPO PURGEABLE COMPO	SR (MCF/)≥M	ug/u	*	5	5
R1040	19900215	PURGLABLE COMPO	BROMOMETHANE CARRON TETRACHLORIDE	∪ g /1.	٠	10	10
91040	19900215	PURGEASLE COMPO	CHLOROGENZERE	ug/L ug/L	«	5 5	5 5
81040	19900215	PURGEABLE COMPO	CHLOROD I BROWNETHANE	ug/L	•	5	Ś
81040	19900215	PURGEABLE COMPO	2-CHEGROETHYLVINYL ETHER	ug/L	· ·	ś	ś
B1040	19900215	PURGEABLE COMPO	CHLOROETHANE	ug/L	٠.	10	10
81040	19900215	PURGEABLE COMPO	CHLORGFORM	ug/L	<	5	5
81040	19900215	PURGEABLE COMPO	CHEOROMETHAME	ug/L	<	10	10
81040	19900215	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L	<	5	5
81040	19900215	PUAGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
81040	19900215	PUNGEABLE COMPO	1,3-DICHEOROBENZENE	ug/L	•	5	5
81040 81040	19900215 19900215	PURGEABLE COMPO PURCEABLE COMPO	1,4-01CHLOROGENZENE	ug/L	<	5	5
81040	19900215	PURGEABLE COMPO	1,1-DICHEOFOSTHANS	ug/L	•	5	5
81040	19900215	PURGEABLE COMPO	1,2-DICHLORGETHANE 1,1-DICHLORGETHENE	ug/L	«	5 5	5 5
B1040	19900215	PURGEABLE COMPO	TRANS-1, 2-DICHLORGETHENE	ug/L ug/L	٠,	5	5
81040	19900215	PURGEABLE COMPO	1.2-DICHLOROPROPANE	ug/L	`	5	5
B1040	19900215	PURGEABLE COMPG	CIS-1,3-DICHLOROPROPENS	ug/L		ś	ś
81040	19900215	PURGEABLE COMPO	TRANS-1,3-DICHLORGPROPENE	ug/L	<	Ś	5
B1040	19900215	PURGEABLE CLANG	ETHYLRENZENE	ug/L	<	5	5
B1040	19900215	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
81040	19900215	PURGEABLE COMPO	1,1,2,2-TETRACHOORGETHANE	ug/L	<	5	5
\$1040 \$1040	19900215	PURGEABLE COMPO	TETRACHLORGETHENE	ug/L	<	5	5
81040 81040	19900215 19900215	PURGEABLE COMPO	TOLUENE	ug/L	∢	5	5
B1040	19900215	PURGEABLE COMPO PURGEABLE COMPO	1,1,1-TRICHLORGETHANE	ug/L	<	5	5
81040	19900215	PURGEABLE COMPO	1,1,2-trechlorgethane trechegroethene	ug/L	<	5	5
B1040	19900215	PURGEABLE COMPO	TRICHLOROFICH	ug/1.	«	5	5
81040	19900215	PURGEABLE COMPO	SUBCEROLOGOROSANS	ug/L ug/l.	· ·	10 10	10
81040	19900215	BASE/NEUTRAL EX	ACEMAPHTHEME	ug/L	•	10	10 10
1 040	19900215	BASE/NEUTRAL EX	ACENAPHINYL ENE	ug/L	٠,	10	10
81040	19900215	BASE/WEUTRAL EX	ANTHRACENE	ug/L	₹	10	10
¥1040	19900215	BASE/HEUTRAL EX	BENZIDIHE	ug/L	<	50	50
£1040	19900215	BASE/NEUTRAL EX	BENZO(#)ANTHRACENE	ug/L	<	10	10

WELL #	DATE	HEADING	PARAMETER	JECT	VALUE	DET	DET LIM
81040	19900215	BASE/NEUTRAL EX	BENZG(b)FLUORANTHENE	ug/i.	<	10	10
31040	19900215	BASE/HEUTRAL EX	BENZO(K) FLUORANTHENE	ug/L	<	10	16
81040	19900215	BASE/NEUTRAL EX	BENZO(a)PYRENE	ug/L	<	10	10
B1040	19900215	BASE/NEUTRAL EX	BENZO(g,h,i)PERYLENE	ug/L	<	10	10
B1040	19900215	BASE/NEUTRAL EX	BUTYLBENZYLPHTHALATE	ug/L	<	10	10
B1040	19900215	BASE/NEUTRAL EX	4-BROMOPHENYL PHENYL ETHER	9/L	<	10	10
81040 81040	19900215 19900215	BASE/NEUTRAL EX BASE/NEUTRAL EX	BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROETHYOXY)METHANE	ug/i	< <	10 10	10 10
B1040	19900215	BASE/HEUTRAL EX	BIS(2-ETHYLHEXYL)PHTHALATE	ug/L ug/L	`	23	10
81040	19900215	BASE/NEUTRAL EX	BIS(2-CHLUROISOPROPYL)ETHER	ug/L	<	10	10
81040	19900215	BASE/WEUTRAL EX	2-CHLORONAPHTHALENE	ug/L	<	10	10
8104C	19900215	BASE/NEUTRAL EX	4-CHLOROPHENYL PHENYL ETHER	ug/L	<.	10	10
B1040	19900215	BASE/NEUTRAL EX	CHRYSENE	ug/i.	<	10	10
B1040	19900215	BASE/NEUTRAL EX	DIBENZO(a, h)ANTHRACENE	ug/L	<	10	10
B1040	19900215	BASE/NEUTRAL EX	DI-N-BUTYLPHTHALATE	ug/L	< .	10	10
81040 81040	19900215 19900215	PURGEABLE COMPO PURGEABLE COMPO	1,2-DICKLOROBENZENE	ug/L	< <	10	10
81040	19900215	PURGEABLE CUMPO	1,3-DICHLOROBENZERE 1,4-DICHLOROBENZERE	ug/L ug/L	<	10 10	10 10
B1040	19900215	BASE/NEUTRAL EX	3,3-DICHLOROSENZIDIHE	ug/L	`	20	20
B1040	19900215	BASE/NEUTRAL EX	DIETHYL PHYHALATE	ug/L	4	10	10
B1040	19900215	BASE/NEUTRAL EX	DIMETHYL PHTHALATE	ug/L	· ·	10	10
81040	19900215	BASE/NEUTRAL EX	2,4-DINITROTCLUENE	ug/L	<	10	10
81040	19900215	RASE/NEUTRAL EX	2,6-DIN: TROLOLUENE	ug/L	<	10	10
81040	19900215	BASE/HEUTRAL EX	DI-N-OCTYLPHTHALATE	ug/L	<	10	10
81040	19900215	BASE/WEUTRAL EX	010X1H(2,3,7,8-TCD0)	ug/L	<	0	0
B1040	19900215	BASE/NEUTRAL EX	FLUGRANTHENE	Ug/L	<	10	10
B1040	19900215	BASE/NEUTRAL EX	FLUGRENE	ug/L	<	10	10
B1040 B1040	19900215 19900215	BASE/NEUTRAL EX BASE/NEUTRAL EX	HEXACHLOROBENZEHE HEXACHLOROBUTADIENE	ug/L	< <	10 10	10 10
81040	19900215	BASE/NEUTRAL EX	HEXACHLOROCYCLOPENTAD IENE	ug/L ug/L	` `	10	10
B1040	19900215	BASE/NEUTRAL EX	HEXACHLOROETHANE	ug/L	<	10	10
B1040	19900215	BASE/NEUTRAL EX	INDENO(1,2,3-c,d)PYPENE	ug/L	<	10	10
B1040	19900215	BASE/HEUTRAL EX	ISSPHORONE	ug/L	<	10	10
81040	19900215	BASE/HEUTRAL EX	NAPHTHALENE	ug/L	<	10	10
81040	19900215	BASE/NEUTRAL EX	NITROBENZENE	ug/L	<	10	10
81040	19900215	BASE/NEUTRAL EX	N-NITROSO-DI METHYLANINE	ug/L	ς.	10	10
B1040 B1040	19900215 19900215	BASE/REUTRAL EX BASE/NEUTRAL EX	N'NITROSO-DI-PHENYLAMINE N'NITROSO-DI-N-PROPYLAMINE	ug/L	«	10 10	10 10
81040	19900215	BASE/NEUTRAL EX	PHENANTHRENE	ug/L ug/L	``	10	10
8104ŭ	19960215	BASE/NEUTRAL EX	PYRENE	ug/L	•	10	10
81040	19903215	BASE/NEUTRAL EX	1,2,4 TRICHLOROGENZEHE	ug/L	<	10	10
81040	19900215	ACID EXTRACT	4-CHLORG-3-METHYLP ENOL	ug/L	<	10	10
8104G	19900215	ACID EXTRACT	2,4-DICHLOROPHENOL	ug/L	<	10	10
B1040	19900215	ACID EXTRACT	2,4-DIMETHYLPHENOL	ug/L	<	10	10
81040	19900215	ACID EXTRACT	2,4-DINITROPHENOL	ug/L	<	50	50
81040	19900215	ACID EXTRACT	2-METHYL-4,6-DINITACPHENOL	ug/L	<	50	50
81040	19900215	ACID EXTRACT	2-NITROPHENGL	ug/L	<	10	10
81048 81048	19900215 19900215	ACID EXTRACT ACID EXTRACT	4-MITROPHENOL	ug/L	۷	50	. 50
B1040	19900215	ACID EXTRACT	PENTACHLOROPHENOL PHENOL	ug/L_ ug/L_		50 10	50 10
B1040	19900215	ACID EXTRACT	2,4,5-TRICHLOROPHENOL	ug/L	·	10	10
B1040	19900215	PESTICIOLS	ALDRIN	ug/L		.04	.04
81040	19900215	PESTICIDES	a-8HC	ug/L	<	.03	.05
81040	19900215	PESTICIDES	b-\$4C	ug/L	<	.06	.05
31	19900215	PESTICIDES	g-SHC	ug/L	•	.09	. 09
B1740	19900215	PESTICIDES	d-BHC	ug/L	•	.04	. 04
81040 81040	19900215	PESTICIDES	CHLORDANE	ug/L	•	. 14	. 14
81040 81040	19900215 19900215	PESTICIDES	4,41-000	uq/L	٠	.11	, 11
81040 81040	19903215	PESTICIDES PESTICIDES	4,47-00E 4,47-00T	Ug/(«	.04 .12	.04
B1040	19960215	PESTICIDES	DIELDRIN	∪g/L 19g/L	· ·	.02	. 12 .02
81040	19900215	PESTICIDES	ENDOSUL FAN 1	ug/L	₹	. 14	.14
B1040	19900215	PESTICIDES	ENDOSULFAN 1:	ug/L	·	.04	.04
61040	19200215	PESTICIDES	ENDUSULFAN SULFATE	ug/L	•	,66	.66
#1040	19900215	PESTICIDES	ENCRIM	uy/t	₹	.06	. 06
81040	19900215	PESTICIDES	ENDRIN ALDERYDE	ug/L	<	.23	.23
81040	19900215	PESTICIDES	HEPTACHLOR	uq/L	₹	.03	. 03
81040	1990021 5 1990021 5	PESTICIDES	HEPTACHLOR EPOXIDE	ug/L	٠	.83	.83
B1040	134.70513	PESTICIDES	METHOXYCHLOR	ug/L	<	1.8	1.8

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
B1040	19900215	PCB	PCB-1016	ug/L	<	.1	.1
81040	19900215	PCB	PC8-1221	ug/L	<	.1	.1
81040	19900215	PC8	PCB-1232	ug/L	<	.1	.1
B1040	19900215	PCB	PCB-1242	ug/L	<	.1	.1
B1040	19900215	PCB	PCB-1248	ug/L	<	.1	.1
B1040	19900215 19900215	PCB PCB	PCB-1254 PCB-1260	ug/L ug/L	< <	.1	.1
81040 81040	19900215	PESTICIDES	TOXAPHENE	ug/L	` `	2.4	2.4
81040	19900215	TENTATIVELY COM	HEXADECANOIC	ug/L	ABN	10	0
B1040	19900215	SURR COMP	1,2-DICHLOROETHANE-D4-S	% ug/L		- 42.8	50
B1040	19900215	SURR COMP	TOLUENE-08-S	% ug/L		46.5	50
B1040	19900215	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		46.2	
B1040	19900215	SURR COMP	NITROBENZENE-05-S	% ug/L		18.9	
B1040	19900215	SURR COMP	2-FLUOROBIPHENYL-S TERPHENYL-D14	% ug/L % ug/L		22.7 24.9	
61040 81040	19900215 19900215	SURR COMP SURR COMP	- PHENOL-D6-S	% ug/L		18.8	-
B1040	19900215	SURR COMP	2-FLUOROPHENOL-S	% ug/L		45	100
B1040	49900215	SURR COMP	2,4,6-TRIBROMOPHENOL-D4-S	% ug/L		66.5	100
B1040	19900215	BASE/NEUTRAL EX	1,2-DIPHENYLHYDRAZINE	ug/L	<	10	
B1041	19900215	PHYSICAL	pH	ph		5.68	
81041	19900215	PHYSICAL	CONDUCTIVITY	umhos		45	
B1041	19900215	PHYSICAL	TEMPERATURE	deg C	_	11.2	
81041	19900215	METALS	ANTIMONY ARSENIC	ug/L	< <	30 1	
81041 81041	19900215 19900215	METALS METALS	BERYLLIUM	ug/L ug/L	` `	i	
81041	19900215	METALS	CADMIUM	ug/L	<	5	
81041	19900215	METALS	CHROMIUM	ug/L	<	10	10.
B1041	19900215	METALS	COPPER	ug/L		145	
81041	19900215	METALS	LEAD	u _a /L		79.2	
B1041	19900215	METALS	MERCURY	ug/L	<	.2	
81041	19900215	METALS	NICKEL SELENIUM	ug/L	«	15 2	
B1041 B1041	19900215 19900215	METALS METALS	SILVER	uạ/L Lj/L		10	
B1041	19900215	METALS	THALLIUM	ug/L	` `		- 10
B1041	19900215	METALS	ZINC	ug/L		116	_
B1041	19900215	HERBICIDES ANAL	2,4-0	ug/L	<	50	
81041	19900215	HERBICIDES ANAL	2,4,5-T	ug/L	<	50	
81041	19900215	HERBICIDES ANAL	2,4,5-TP (SILVEX)	ug/L	«	50	
B1041	19900215	PURGEABLE COMPO	ACROLEIN ACRYLONITRILE	ug/L	«	10 10	
81041 81041	19900215 19900215	PURGEABLE COMPO PURGEABLE COMPO	BENZENE	ug/L ug/L	~	5	
B1041	19900215	PURGEABLE COMPO	BROMOFORN	ug/L	<	5	
B1041	19900215	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	
B1041	19900215	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	
81041	19900215	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	
B1041	19900215	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L	<	5	
81041	19900215	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5 10	
81041	19900215	PURGEABLE COMPO PURGEABLE COMPO	CHLOROETHANE CHLOROFORM	ug/L ug/L	< <	5	
81041 81041	19900215 19900215	PURGEABLE COMPO	CHLOROMETHANE	ug/L	~	10	
B1041	19900215	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L	<	5	_
B1041	19900215	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
B1041	19900215	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L		5	5
£1041	19900215	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	5	5
B1041	19900215	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L		5	
B1041	19900215	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	< <	5	5
B1041 B1041	19900215 19900215	PURGEABLE COMPO PURGEABLE COMPO	1,1-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE	ug/L ug/L	` `	5	5
81041	19900215	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
81041	19900215	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	₹	Ś	5
81041	19900215	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	<	5	5
81041	19900215	PURGEABLE COMPO	ETHYLBENZENE	ug/L		5	5
B1041	19900215	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	
B1041	19900215	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L		5	5
81041	19900215	PURGEABLE COMPO	TETRACHLOROETHENE TOLUENE	ug/L ug/L		5	
B1041 B1041	19900215 19900215	PURGEABLE COMPO PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L		5	5
81041	19900215	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L		5	
B1041	19900215	PURGEABLE COMPO	TRICHLOROETHENE	ug/L		5	
	-						

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
B 1041	19900215	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
B1041	19900215	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
B1041	19900215	BASE/NEUTRAL EX	ACENAPHTHENE	ug/L	<	10	10
81041 81041	19900215 19900215	BASE/NEUTRAL EX	ACENAPHTHYLENE	ug/L	(10 10	10 10
B1041	19900215	BASE/NEUTRAL EX BASE/NEUTRAL EX	ANTHRACENE BENZIDINE	ug/L ug/L	~	50	50
B1041	19900215	BASE/NEUTRAL EX	BENZO(a)ANTHRACENE	ug/L	<	10	10
B1041	19900215	BASE/NEUTRAL EX	BENZO(b)FLUORANTHENE	ug/L	<	10	10
B1041	19900215	BASE/NEUTRAL EX	BENZO(k)FLUORANTHENE	ug/L	<	10	10
81041 81041	19900215 19900215	BASE/NEUTRAL EX BASE/NEUTRAL EX	Benzo(a)Pyrene Benzo(g,h,i)Perylene	ug/L ug/L	< <	10 10	10 10
81041	19900215	BASE/NEUTRAL EX	BUTYLBENZYLPHTHALATE	ug/L	` `	10	10
81041	19900215	BASE/NEUTRAL EX	4-BROMOPHENYL PHENYL ETHER	ug/L	<	10	10
B1041	19900215	BASE/NEUTRAL EX	BIS(2-CHLOROETHYL)ETHER	ug/L		10	10
B1041	19900215	BASE/NEUTRAL EX	BIS(2-CHLOROETHYOXY)METHANE	ug/L	<	10	10
B1041 B1041	19900215 19900215	BASE/NEUTRAL EX	BIS(2-ETHYLHEXYL)PHINALATE BIS(2-CHLOROISOPROPYL)ETHER	ug/L	. <	10 10	10 10
81041	19900215	BASE/NEUTRAL EX BASE/NEUTRAL EX	2-CHLORONAPHTHALENE	ug/L ug/L	`	10	10
B1041	19900215	BASE/NEUTRAL EX	4-CHLOROPHENYL PHENYL ETHER	ug/L		10	10
81041	19900215	BASE/NEUTRAL EX	CHRYSENE	ug/L	<	10	10
B1041	19900215	BASE/NEUTRAL EX	DIBENZO(a,h)ANTHRACENE	ug/L	<	10	10
81041	19900215	BASE/NEUTRAL EX	DI-N-BUTYLPHTHALATE	ug/L	<	10	10
B1041	19900215	PURGEABLE CCMPO	1,2-DICHLOROGENZENE	ug/L	<	10	10
B1041 B1041	19900215 19900215	PURGEABLE COMPO PURGEABLE COMPO	1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	ug/L-	- «	10 10	10 10
B1041	19900215	BASE/NEUTRAL EX	3,3-DICHLOROSENZIDINE	ug/L ug/L	` ` `	20	20
81041	19900215	BASE/NEUTRAL EX	DIETHYL PHINALATE	ug/L	<	10	10
B1041	19900215	BASE/NEUTRAL EX	DIMETHYL PHTHALATE	ug/L	<	10	10
B1041	19900215	BASE/NEUTRAL EX	2,4-DINITROTOLUENE	ug/L	<	10	10
81041 81041	19900215 19900215	BASE/NEUTRAL EX	2,6-DINITROLOLUENE	ug/L	<	10	10 10
B1041	19900215	BASE/NEUTRAL EX BASE/NEUTRAL EX	DI-N-OCTYLPHTHALATE DIOXIN(2,3,7,8-TCDD)	ug/L ug/L	«	10	0
B1041	19900215	BASE/NEUTRAL EX	FLUORANTHENE	ug/L	<	10	10
B1041	19900215	BASE/NEUTRAL EX	FLUORENE	ug/L	<	10	10
B1041	19900215	BASE/NEUTRAL EX	HEXACHLOROGENZENE	ug/L	<	10	10
B1041 B1041	19900215 19900215	BASE/NEUTRAL EX BASE/NEUTRAL EX	HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE	ug/L	< <	10 10	10 10
81041	19900215	BASE/NEUTRAL EX	HEXACHLOROETHANE	ug/L ug/L	~	10	10
81041	19900215	BASE/NEUTRAL EX	INDENO(1,2,3-c,d)PYRENE	ug/L	<	10	10
81041	19900215	BASE/NEUTRAL EX	ISOPHORONE	ug/L	<	10	10
81041	19900215	BASE/NEUTRAL EX	HAPHTHALEHE	ug/L	<	10	10
81041 81041	19900215 19900215	BASE/HEUTRAL EX	NITROBENZENE N-NITROSO-DI-METHYLAMINE	ug/L	< <	10 10	10 10
B1041	19900215	BASE/NEUTRAL EX BASE/NEUTRAL EX	N-NITROSO-DI-PHENYLANINE	ug/L ug/L	``	10	10
B1041	19900215	BASE/NEUTRAL EX	N-NITROSO-DI-N-PROPYLANINE	ug/L	` `	10	10
B1041	19900215	BASE/NEUTRAL EX	PHENANTHRENE	ug/L	<	10	10
B1041	19900215	BASE/NEUTRAL EX	PYRENE	ug/L	<	10	10
81041	19900215	BASE/NEUTRAL EX	1,2,4-TRICHLOROGENZENE	ug/L	<	10	10
B1041	19900215	ACID EXTRACT	4-CHLORO-3-METHYLPHENOL	ug/L	<	10	10
81041 81041	19900215	ACID EXTRACT ACID EXTRACT	2,4-01CHLOROPHEROL	ug/L ug/L	«	10 10	10
81041	19900215 19900215	ACID EXTRACT	2,4-DIMETHYLPHENOL 2,4-DIN!TROPHENOL	ug/L	•	50	10 50
B1041	19900215	ACID EXTRACT	2-METHYL-4,6-DIHITROPHENOL	ug/L	₹	50	50
B1041	19900215	ACID EXTRACT	2-NITROPHENOL	ug/L	<	16	10
81041	19900215	ACID EXTRACT	4-NITROPHENOL	ug/L	<	50	50
81041	19900215	ACID EXTRACT	PENTACHLOROPHENOL	ug/L	<	50	50
81041 81041	19900215 19900215	ACID EXTRACT ACID EXTRACT	PHENOL 2,4,5-TRICHLOROPHENOL	ug/L ug/L	«	10 10	10 10
B1041	19900215	PESTICIDES	ALDRIN	ug/L	~	.04	.04
81041	19900215	PESTICIDES	a-BHC	ug/L	<	.03	.03
81041	19900215	PESTICIDES	P-BHC	ug/L	<	.06	.06
B1041	19900215	PESTICIDES	g-BHC	ug/L	«	.09	.09
B1041 B1041	19900215 19900215	PESTICIDES PESTICIDES	d-8HC CNLORDANE	ug/L ug/L	< <	.04 .14	.04
B1041	19900215	PESTICIDES	4,41-000	ug/L	~	.11	.11
B1041	19900215	PESTICIDES	4,41-DDE	ug/L	<	.04	.04
81041	19900215	PESTICIDES	4,4'-DDT	ug/L	<	.12	.12
81041	19900215	PESTICIDES	DIELDRIN	ug/L	•	.02	.02
81041	19900215	PESTICIDES	ENDOSULFAN I	ug/L	<	. 14	.14

WELL	#	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
B1041	•••	19900215	PESTICIDES	ENDOSULFAN 11	ug/L	<	.04	.04
B1041		19900215	PESTICIDES	ENDOSULFAN SULFATE	ug/L	<	.66	.66
B1041		19900215	PESTICIDES	ENDRIN	ug/L	<	.06	.06
B1041		19900215	PESTICIDES	ENDRIN ALDEHYDE	ug/L	<	.23	.23
B1041		19900215	PESTICIDES	HEPTACHLOR	ug/L	<	.03	.03
B1041		19900215	PESTICIDES	HEPTACHLOR EPOXIDE	ug/L	<	.83	.83
81041		19900215	PESTICIDES	METHOXYCHLOR	ug/L	<	1.8	1.8
81041		19900215	PCB	PCB-1016	ug/L	<	.1	- 1
B1041		19900215	PCB	PCB-1221	ug/L	< .		.1
B1041		19900215	PCB	PCB-1232	ug/L	<	.1	.1
B1041		19900215	PC8	PCB-1242	ug/L	<	.1	.1
B1041		19900215	PCB	PCB-1248	ug/L	<	.1	.1
B1041		19900215	PCB	PCB-1254	ug/L	۲	.1	.1
81041		19900215	PCB	PC8-1260	ug/L	< <	.1 2.4	2.4
B1041		19900215	PESTICIDES	TOXAPHENE TERT-BUTYL PHENOL	ug/L	ABN	20	- 0
81041		19900215	TENTATIVELY COM	UNIDENTIFIED ALKANE	ug/L ug/Ł	ABN	11	ŏ
91041		19900215	TENTATIVELY COM	HEXADECANOIC	ug/L	ABN	40	ŏ
B1041		19900215	TENTATIVELY COM	DICHLORO TETRAFLUORDETHANE	ug/L	VOA	13	Ŏ
B1041		19900215	TENTATIVELY COM TENTATIVELY COM	UNIDENTIFIED ALKANE	ug/L	ABN	140	ō
81041		19900215	TENTATIVELY COM	DICHLORO TETRAFLUOROETHANE	ug/L	VOA	12	Ō
81041		19900215 19900215	SURR COMP	1.2-DICHLOROETHANE-D4-S	% ug/L		43.1	50
B1041		19900215	SURR COMP	TOLUENE-D8-S	% ug/L		47.1	50
B1041 B1041		19900215	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		45.2	50
B1041		19900215	SURR COMP	NITROBENZENE-D5-S	% ug/L		23.9	50
B1041		19900215	SURR COMP	2-FLUOROSIPHENYL-S	% ug/L		21.5	50
81041		19900215	SURR COMP	TERPHENYL-D14	% ug/L		27.7	50
B1041		19900215	SURR COMP	PHENOL-D6-S	% ug/L		18.7	100
B1041		19900215	SURR COMP	2-FLUOROPHENOL-S	% ug/L		41.2	100
B1041		19900215	SURR COMP	2,4,6-TRIBROMOPHENOL-D4-S	% ug/L		67.7	100
B1041		19900215	BASE/NEUTRAL EX	1,2-DIPHENYLHYDRAZINE	ug/L	<	10	10
	BLAN	19900216	PURGEABLE COMPO	ACROLEIN	ug/L		/10	10
TRAIL	BLAN	19900216	PURGEABLE COMPO	ACRYLONITRILE	ug/L		10	10
TRAIL	BLAN	19900216	PURGEABLE COMPO	BENZENE	ug/L		5	5
		19900216	PURGEABLE COMPO	BRONOFORM	ug/L		5	5
		1990J216	PURGEABLE COMPO	BROMOMETHANE	ug/L		10	10
		19900216	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L		5	5
		19900216	PURGEABLE COMPO	CHLOROBENZENE	ug/L		5 5	5 5
		19900216	PURGEABLE COMPO	CHLORODIBROMOMETHANE	ug/L		5	5
		19900216	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L		10	10
		19900216	PURGEABLE COMPO	CHLOROETHANE CHLOROFORM	ug/L ug/L		5	Š
		19900216	PURGEABLE COMPO PURGEABLE COMPO	CHLOROMETHANE	ug/L		10	10
		19900216 19900216	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L		5	5
		19900216	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L		5	5
		19900216	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L		5	5
		19900216	PURGEABLE COMPO	1,4-DICHLOROBEHZENE	ug/L		5	5
		19900216	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	. «	5	5
TRAIL	BLAN	19900216	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	, «	5	5
TRAIL	BLAN	19900216	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/l	. •	5	5
TRAIL	BLAN	19900216	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/l		5	5
TRAIL	BLAN	19900216	PURGEABLE COMPO	1,2-DICHLOROPRUPANE	ug/l		5	5
		19900216	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/l		5	5
		19000216	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/l		5	5
		19900216	PURGEABLE COMPO	ETHYLBENZENE	ug/l		5	
		19900216	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/l		10	
		19900216	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/l		5 5	
		19900216	PURGEABLE COMPO	TETRACHLOROETHENE	ug/l	-	5	
		19900216	PURGEABLE COMPO	TOLUENE	ug/i	_	7.6	
TRAIL	BLAN	19900216	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE	ug/l ug/i		5	ί ,
		19900216	PURGEABLE COMPO	TRICHLOROETHANE	ug/i		Ś	
		19900216	PURGEABLE COMPO PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/l	-	10	
		1 19900216 1 19900215	TENTATIVELY COM	DICHLORO TETRAFLUOROETHANE	ug/l	=	40	
		19900215	SURR COMP	1,2-DICHLOROETHANE-04-S	% ug/		43	
		19900216	SURR COMP	TOLUENE-08-S	% ug/i		46.4	
TDAIL	, GLAP	19900216	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/l		44.8	
BLANK		19900214	BASE/NEUTRAL EX	1,2-DIPHENYLHYDRAZINE	ug/		10	10

APPENDIX N

GROUNDWATER CHEMICAL DATA FOR SAMPLE ROUND 2 MAY 1990

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
	19900522	PHYSICAL	CONDUCTIVITY	umhos		98	0
FTA-M01 FTA-M01	19900522	PHYSICAL	TEMPERATURE	deg C		11.5	0
FTA-MO1	19900522	PP	HITRATES	mg/L		4.2	.2
FTA-MO1	19900522	PHYSICAL	pil	ph		6.01	0
FTA-MO1	19900522	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-HO1	19900522	PP	SULFATE	mg/L		34.6	.5
FTA-M01	19900522	P P	CHLORIDE	mg/L		15.4	2
FTA-H01	19900522	PP	TDS	mg/L	_	94 30	10 30
FTA-MO1	19900522	METALS	ANTIMONY	ug/L	«	30 1	1
FTA-MO1	19900522	METALS	ARSENIC BARIUM	ug/L ug/L	`	23.5	Ś
FTA-H01	19900522	METALS	BERYLLIUM	ug/L	<	1	1
FTA-MO1	19900522 19900522	METALS NETALS	CADNIUM	ug/L	<	5	5
FTA-M01	19900522	METALS	CALCIUM	mg/L		8.88	.01
FTA-MO1 FTA-MO1	19900522	METALS	CHROMIUM	ug/L	<	10	10
FTA-MO1	19900522	METALS	COPPER	ug/L	<	10	10
FTA-HO1	19900522	METALS	IRON	ug/L		560	10
FTA-MO1	19900522	METALS	LEAD	ug/L	<	20	20
FTA-HO1	19900522	METALS	HAGNESIUM	ug/L		2470	30
FTA-MO1	19900522	METALS	MANGANESE	ug/L	_	15.5	10 .2
FTA-H01	19900522	METALS	MERCURY	ug/L	<	.2 15	15
FTA-M01	19900522	METALS	NICKEL	ug/L	<	.896	.5
FTA-MO1	19900522	METALS	POTASSIUM	mg/L		1.6	.,
FTA-HO1	19900522	METALS	SELENIUM SILVER	ug/L ug/L	<	10	10
FTA-H01	19900522	METALS	SILICA	mg/L	•	1.08	.1
FTA-HO1	19900522	METALS METALS	SODIUM	mg/L		8.46	.03
FTA-H01	19900522 19900522	METALS	THALLIUM	ug/L	<	30	30
FTA-MO1 FTA-MO1	19900522	METALS	ZINC	ug/L	<	10	10
FTA-HO1	19900522	PP	AMMONTA HITROGEN	mg/L		.3	.01
FTA-HO1	19900522	PP	OIL & GREASE	mg/L		4	1
FTA-MOT	19900522	PP	TOTAL PHENOLS	ug/L	<	5	. 5
FTA-MO1	19900522	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-MO1	19900522	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10 5
FTA-MO1	19900522	PURGEABLE COMPO	BENZENE	ug/L		5 5	5
FTA-MO1	19900522	PURGEABLE COMPO	BROMOFORM BROMOMETHANE	ug/L	«	10	10
FTA-H01	19900522	PURGEABLE COMPG	CARBON TETRACHLORIDE	ug/L ug/L		5	5
FTA-MO1	19900522	PURGEABLE COMPO PURGEABLE COMPO	CHLOROBENZENE	ug/L		5	5
FTA-NO1	19900522 19900522	PURGEABLE COMPO	CHLORADIBROMOMETHANE	ug/L		5	5
FTA-M01 FTA-M01	19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L		5	5
FTA-HO1	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/L		10	
FTA-MO1	19900522	PURGEABLE COMPO	CHLOROFORM	ug/L	. <	5	
FTA-MO1	19900522	PURGEABLE COMPO	CHLOROMETHANE	ug/L		10	
FTA-HO1	19900522	PURGEABLE COMPO	DICHLOROBROMOHETHANE		<	5	
FTA-MO1	19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L		Ş	
FTA-HO1	19900522	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L		5	
FTA-HO1	19900522	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L		Ś	
FTA-MO1	19900522	PURGEABLE COMPO	1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	ug/L ug/L		5	
FTA-MO1	19900522	PURGEABLE COMPO PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	•	9	
FTA-H01	19900522 19900522	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/l		5	
F7A-M01	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L			5
FTA-MG1 FTA-MG1	19900522	PURGEABLE COMPO	CIS-1,3-01CHLOROPROPENE	ug/L			
FTA-MO1	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/l	. «		
FTA-HO1	19900522	PURGEABLE COMPO	ETHYLBENZEHE	ug/l			
FTA-MO1	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/l			
FTA-MO1	19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/l			5
FTA-HO1	19900522	PURGEABLE COMPO	TETRACHLOROETHENE	ug/l			
FTA-HO1	19900522	PURGEABLE COMPO	TULUENE 1,1,1-TRICHLOROETHANE	ug/t ug/i	_		5
FTA-MO1	19900522	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/l	-		ś ś
FTA-M01	19900522	PURGEABLE COMPO PURGEABLE COMPO	TRICHLOROETHENE	ug/i	_		, Š
FTA-MO1	19900522 19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/i	_		
FTA-M01	19900522	PURGEABLE COMPO	VINYL CHLORIDE	ug/l		_	
FTA-MO1 FTA-MO1	19900522	SURR COMP	1,2-DICHLOROETHANE-04-S	X ug/l		56.	
FTA-HO1	19900522	SURR COMP	TOLUENE-D8-S	% ug/1		46.	
FTA-HO1	19900522	SURR COMP	4-BROMOFLUOROBENZENE-\$	% ug/1		52.	
FTA-HOZ	19900522	PHYSICAL	COMOUCTIVITY	umho	8	4	5 0

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO2	19900522	PHYSICAL	TEMPERATURE	dea C		12.4	0
FTA-MO2	19900522	PP	NITRATES			.28	.2
FTA-H02	19900522	PHYSICAL	рH	ph		4.74	0
FTA-NO2	19900522	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-MO2	19900522		- SULFATE			15.9	.5
FTA-MO2	19900522		CHLORIDE	ng/L	<	2	2
FTA-HO2 FTA-HO2	19900522	PP	TDS	ing/L		54	10
FTA-MO2	19900522 19900522	METALS	YNONTINA	ug/L	<	30	30
FTA-MO2	19900522	METALS	ANTIMONY	ug/L	<	30	30
FTA-NO2	19900522	METALS METALS	ARSENIC	ug/L	<	_1	1
FTA-MO2	19900522	NETALS	BARIUM BERYLLIUM	ug/L	_	34	5
FTA-HO2	19900522	HETALS	BERYLLIUM	ug/L	<	1	1
FTA-MO2	19900522	METALS	CADMIUM	ug/L ug/L	< <	1 5	1 5
FTA-MO2	19900522	METALS	CALCIUM	mg/L	`	2.467	
FTA-MO2	19900522	HETALS	CHROMEUM	ug/L	<	10	.01 10
FTA-MO2	19900522	METALS	COPPER	ug/L	•	11.2	10
FTA-MO2	19900522	METALS	IRON	ug/L		374	10
FTA-MO2	19900522	METALS	LEAD	ug/L	<	20	20
FTA-HO2	19900522	METALS	MAGNESIUM	Ug/L	•	2631	30
FTA-MO2	19900522	METALS	MANGANESE	ug/L		43	10
FTA-MO2	19900522	METALS	MERCURY	ug/L	<	.2	.2
FTA-MO2	19900522	METALS	NICKEL	ug/L	<	15	15
FTA-MO2	19900522	METALS	POTASSIUM	mg/L		.518	.5
FTA-MOZ	19900522	METALS	SELENIUM	ug/L		1.7	1
FTA-HO2	19900522	METALS	SILVER	ug/L	<	10	10
FTA-MO2 FTA-MO2	19900522 19900522	METALS	SILICA	mg/L		1.46	.1
FTA-MO2	19900522	METALS	SILICA	mg/L		1.49	. 1
FTA-MO2	19900522	METALS METALS	SODIUM	mg/L		2.04	.03
FTA-MO2	19900522	METALS	THALLIUM THALLIUM	ug/L	<	30	30
FTA-MO2	19900522	METALS	ZINC	ug/L	∢	30	30
FTA-MO2	19900522	PP	AMMONIA NITROGEN	ug/L mg/L		41.8 .27	10
FTA-MO2	19900522	PP	OIL & GREASE	mg/L		.27	.01
FTA-HO2	19900522	PP	TOTAL PHENOLS	ug/L	<	5	5
FTA-HO2	19900522	PURGEABLE COMPO	ACROLEIN	ug/L	· «	10	10
FTA-MO2	19900522	PURGEABLE COMPO	ACRYLONITRILE	ug/L	< .	10	10
FTA-HO2	19900522	PURGEABLE COMPO	BENZENE	Ug/L	< −	5	5
FTA-HO2	19900522	PURGEABLE COMPO	BROMOFORM	ug/L	<	Ś	Ś
FTA-MO2	19900522	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
FTA-MO2	19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-HOZ	19900522	PURGEABLE COMPO	CHLOROGENZENE	ug/L	<	5	5
FTA-MO2 FTA-MO2	19900522	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L	<	5	5
FTA-MO2	19900522 19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-MO2	19900522	PURGEABLE COMPO PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-MO2	19900522	PURGEABLE COMPO	· CHLOROFORM	ug/L	<	5	5
FTA-MOZ	19900522	PURGEABLE COMPO	CHLOROMETHANE DICHLOROGROMOMETHANE	ug/L	<	10	10
FTA-MO2	19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE		<	5	5
FTA-HO2	19900522	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L ug/L	«	5 5	5 5
FTA-MO2	19900522	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	~	5	_
FTA-MO2	19900522	PURGEABLE COMPO	1,1-DICHLORGETHANE	ug/L	~	5	5 5
FTA-MO2	19900522	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	Š	ś
FTA-MO2	19900522	PURGEABLE COMPO	1,1-DICHLOROETHENE	Ug/L	<	Š	5
FTA-MO2	19900522	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	Ug/L	<	5	5
FTA-MO2	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
FTA-MO2	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-MO2	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-MOZ	19900522	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5
FTA-MO2 FTA-MO2	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-MUZ	19900522 19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	<	5	5
FTA-HOZ	19900522	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5
FTA-MO2	19900522	PURGEABLE COMPO PURGEABLE COMPO	TOLUENE	ug/L	«	5	5
FTA-HOZ	19900522	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE	ug/L	«	5	5
FTA-MO2	19900522	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
FTA-HO2	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	٧	.5	5
FTA-MOZ	19900522	PURGEABLE COMPO	VINYL CHLORIDE	ug/L ug/L	< <	10 10	10
FTA-HOZ	19900522	SURR COMP	1,2-DICHLOROETHANE-D4-\$	% ug/L	•	53.6	10 50

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO2	19900522	SURR COMP	TOLUENE-D8-S	% ug/L		44.8	50
FTA-MO2	19900522	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		51	50
FTA-MO4	19900522	PHYSICAL	CONDUCTIVITY	umnos		80	ō
FTA-MO4	19900522	PHYSICAL	TEMPERATURE	deg C		13.4	ŏ
FTA-MO4	19900522	PP	NITRATES	mg/L		1.7	.2
FTA-MO4	19900522	PHYSICAL	Не	ph		5,99	Ō
FTA-MO4	19900522	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-MO4	19900522	PP	SULFATE	mg/L		6.37	.5
FTA-MO4	19900522	PP	CHLORIDE	mg/L		5.84	2
FTA-H04	19900522	PP	TDS	mg/L		76	10
FTA-M04	19900522	METALS	YHONY	ug/L	<	30	30
FTA-MO4	19900522	METALS	ARSENIC	ug/L	<	1	1
FTA-HO4	19900522	METALS	BARILM	ug/L		54.5	5
FTA-MO4	19900522	METALS	BERYLLIUM	ug/L	<	1	1
FTA-MO4	19900522	METALS	CADMIUM	ug/L	<	5	5
FTA-A04	19900522	HETALS	CALCIUM	mg/L		2.9	.01
FTA-MO4	19900522	METALS	CHPOMIUM	ug/L	<	10	10
FTA-HO4	19900522	METALS	COPPER	ug/i		12.2	10
FTA-HO4	19900522	METALS	IRON	ug/L		224	10
FTA-MO4	19900522	HETALS	LEAD	ug/L	<	20	20
FTA-MO4	19900522	METALS	MAGNESIUM	ug/L		2320	30
FTA-MO4	19900522	METALS	MANGANESE	ug/L		14	10
FTA-H04	19900522	METALS	MERCURY	ug/L	<	.2	.2
FTA-MO4	19900522 19900522	METALS	NICKEL	ug/L	<	15	15
FTA-MO4 FTA-MO4	19900522	METALS	POTASSIUM	mg/L		4.48	.5
FTA-H04	19900522	METALS METALS	SELENIUM SILVER	ug/L		1.1	1
FTA-HO4	19900522	METALS	SILICA	ug/L	<	10 2.054	10 .1
FTA-H04	19900522	METALS	SODIUM	mg/L		3.484	.03
FTA-H04	19900522	METALS	THALLIUM	mg/L ug/L	<	30	30
FTA-MO4	19900522	METALS	ZINC	ug/L	•	18.5	10
FTA-MO4	19900522	PP	AMMONIA HITROGEN	ang/L		31	.01
FTA-HO4	19900522	PP	OIL & GREASE	ng/L		4	1
FTA-MO4	19900522	PP	TOTAL PHENOLS	ug/L	<	5	Š
FTA-MO4	19900522	PURGEAGLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-H04	19900522	PUPGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-MO4	19900522	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
FTA-MO4	19900522	PURGEABLE COMPO	BRONGFORM	ug/L	<	5	5
FTA-MO4	19900522	PURGEABLE COMPO	BRCHOMETHANE	ug/L	<	10	10
FTA-HO4	19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-HO4	19900522	PURGEAGLE COMPO	CHLOROBENZENE	ug/L	<	5	5
FTA-HO4	19900522	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L	<	5	5
FTA-MG4	19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-MO4	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-NO4	19900522	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-HO4	19900522	PURGEABLE COMPO	CHLOROMETHANE	ug/L	<	10	10
FTA-MO4	19900522	PURGEABLE COMPO	DICHLOROBROMOMETHANE		<	5	5
FTA-MO4	19900522 19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
FTA-MO4		PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
FTA-MO4 FTA-MO4	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE	ug/L	٠	5	5
FTA-MO4	19900522	PURGEARLE COMPO		ug/L	<	5	5
FTA-MO4	19900522	PURGEABLE COMPO	1,2-DICHLOROETHANE 1,1-DICHLGROETHENE	ug/L ug/L	«	5 5	5 5
FTA-MO4	19900522	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE		``	. 5	2
FTA-HO4	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L ug/L	``	5	5 5
FTA-MO4	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	~	5	5
FTA-HO4	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	è	ś	5
FTA-MO4	19900522	PURGEABLE COMPO	ETHYLBENZENE	ug/L		ś	Š
FTA-HO4	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	•	10	10
FTA-HO4	19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	•	5	5
FTA-MO4	19900522	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	Ś
FTA-MO4	19900522	PURGEAGLE COMPO	TOLUENE	ug/L	<	5	5
FTA-HO4	19900522	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5
FTA-HU4	19900522	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	Ug/L	<	5	Š
FTA-HO4	19900522	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	€	5	5
FTA-MO4	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	•	10	10
FTA-MO4	19900522	PURGEABLE COMPO	AINAF CHFOMIDE	ug/L	<	10	10
FTA-HQ4	19900522	SURR COMP	1,2-DICHLOROETHANE-D4-S	% ug/L		43	50
FTA-MO4	19900522	SURR COMP	TOLUENE-D8-S	% ug/L		48.7	50

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO4	19900522	SURR COMP	4-BRONOFLUOROBENZENE-S	% ug/L		45.6	50
FTA-HOS	19900522	PHYSICAL	COMPUCTIVITY	umhos		45	Ō
FTA-MOS	1990C522	PHYSICAL	TEMPERATURE	deg C		14.8	0
FTA-HOS	19900522	PP	MITRATES	mg/L		1	.2
FTA-MOS	19900522	PHYSICAL	pH	ph		4.97	0
FTA-MOS FTA-MOS	19900522 19900522	PP P P	ORTHOPMOSPHATE SULFATE	mg/L	<	.2	.2 .5
FTA-HOS	19900522	PP PP	CHLORIDE	mg/L mg/L		2.24 6.65	2
FTA-MOS	19900522	P P	TOS	mg/L		46	10
FTA-MOS	19900522	METALS	YMONITHA	ug/L	<	30	30
FTA-MOS	19900522	METALS	ARSENIC	ug/L	<	1	1
FTA-MOS	19900522	METALS	BARTUM	ug/L		32.2	5
FTA-MOS	19900522	HETALS	BARTUM	ug/L		30.8	5
FTA-MOS	19900522	METALS	MERYLLIUM	ug/L	<	1	1
FTA-MOS FTA-MOS	19900522 19900522	METALS METALS	CADRIUM	ug/L	«	5 5	5 5
FTA-MOS	19900522	METALS	CALCIUM	ug/L mg/L	•	1.847	.01
FTA-MOS	19900522	METALS	CHRONTUM	ug/L	<	10	10
FTA-MOS	19900522	METALS	CHRONIUM	ug/L	<	10	10
FTA-MOS	19900522	METALS	COPPER	ug/L	<	10	10
FTA-MOS	19900522	METALS	COPPER	ug/L	<	10	10
FTA-MOS	19900522	METALS	IRON	ug/L		313	10
FTA-MOS	19900522	METALS	IRON	ug/L		311	10
FTA-MOS FTA-MOS	19900522 19900522	METALS	LEAD	ug/L	<	20	2U
FTA-MOS	19900522	METALS METALS	LEAD NAGNESIUM	ug/L ug/L	•	20 1490	20 30
FTA-MOS	19900522	METALS	MANGANESE	ug/L		64.8	10
FTA-HOS	19900522	METALS	MARGANESE	ug/L		66.2	10
FTA-MOS	19900522	METALS	MERCURY	Ug/L	<	.2	.2
FTA-HOS	19900522	METALS	NICKEL	ug/L		19.8	15
FTA-HO5	19900522	METALS	NICKEL	ug/L		19	15
FTA-MOS FTA-MOS	19900522 19900522	METALS	POTASSIUM	mg/L		4.48	.5
FTA-MOS	19900522	METALS METALS	SELENIUM Silver	ug/L ug/L	«	1 10	1 10
FTA-MOS	19900522	METALS	SILVER	ug/L	` `	10	10
FTA-MOS	19900522	METALS	SILICA	mg/L	•	2.17	.1
FTA-HOS	19900522	METALS	S00 (UM	mg/L		4.23	.03
FTA-HOS	19900522	METALS	TRACLIUM	ug/L	<	30	30
FTA-MOS	19900522	METALS	ZINC	ug/L		30.5	10
FTA-MOS FTA-MOS	19900522 19900522	METALS PP	ZINC AMMONIA KITROGEN	ug/L		30.2 .3	10 .01
FTA-MOS	19900522	PP	OIL & GREASE	mg/L mg/L		.5	.01
FTA-MOS	19900522	PP	TOTAL PHENOLS	ug/L	<	Ś	5
FTA-MOS	19900522	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-MO5	19900522	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<.	10	10
FTA-MOS	19900522	PURGEABLE COMPO	BENZENE	ug/L	∢ .	5	5
FTA-MOS	19900522	PURGEABLE COMPO	BRONOFORM	ug/L	<	5	5
FTA-HOS FTA-HOS	19900522	PURGEABLE COMPO	BRONDIETHANE	ug/L	•	10	10
FTA-MUS	19900522 19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE CHLOROBENZENE	ug/L ug/L	< <	5 5	5 5
FTA-MOS	19900522	PURGEABLE COMPO	CHLOROD I BROWNETHANE	ug/L	ì	5	5
FTA-MOS	19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-MOS	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-MOS	19900522	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-MOS	19900522	PURCEABLE COMPO	CHLOROMETHANE	ug/L	<	10	10
FTA-MOS FTA-MUS	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	DICHLOROBROMETHANE		<	5 5	5
FTA-MOS	19900522	PURGEABLE COMPO	1,2-DICHLOROMENZENE 1,3-DICHLOROMENZENE	ug/L ug/L	< <	5	5 5
FTA-MOS	19900522	PURGEABLE COMPO	1,4-DICHEMORENZENE	ug/L	₹	ś	ś
FTA-MOS	19900522	PURGEABLE COMPO	1,1-DICHEGROETHANE	ug/L	•	5	Š
FTA-HOS	19900522	PURGEABLE COMPO	1,2-01CHLOROETHANE	ug/L	<	5	5
7TA-M05	19900522	PURGEABLE COMPO	1,1-DICHLORGETHENE	ug/L	<	5	5
FTA-HOS	19900522	PURGEABLE COMPO	TRANS-1,2-DICHLORGETHENE	ug/L	•	5	5
FTA-HO5 FTA-HO5	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	1,2-01CHLOROPROPANE CIS-1,3-01CHLOROPROPENE	ug/L	< <	5 5	5 5
FTA-HOS	19900522	PURGEABLE COMPO	TRANS-1,3-01CHEOROPROPENE	ug/L ug/L	•	5	5
FTA-MOS	19900522	PURGEABLE COMPO	ETHTLBENZCHE	ug/L		Ś	5
FTA-HOS	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-MO5	19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLORGETHANE	ug/L	<	5	5

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-NOS	19900522	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5
FTA-MOS	19900522	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
FTA-MOS	19900522	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5
FTA-MOS	19900522	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
FTA-HOS	19900522	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
FTA-MOS	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	< <	10 10	10 10
FTA-MO5 FTA-MO5	19900522 19900522	PURGEABLE COMPO SURR COMP	VINYL CHLORIDE 1.2-DICHLOROETHANE-D4-S	ug/L % ug/L	•	55.9	50
FTA-HOS	19900522	SURR COMP	TOLUENE-D8-S	% ug/L		44.4	50
FTA-HO5	19900522	SURR COMP	4-BROMOFLUOROBENZENE-S	ug/L		56	50
FTA-MO6	19900522	PHYSICAL	CONDUCTIVITY	umhos		40	0
FTA-MO6	19900522	PHYSICAL	TEMPERATURE	deg C		13.7	0
FTA-MO6	19900522	PP	NITRATES	mg/L		2.36	.2
FTA-NO6	19900522	PHYSICAL	F4	ph 	_	5.01	0
FTA-HO6	19900522	PP	ORTHOPHOSPHATE	ang/L	<	.2 6.37	.2 .5
FTA-HO6 FTA-HO6	19900522 19900522	PP PP	SULFATE CHLORICE	mg/L mg/L		11.1	.5
FTA-MO6	19900522	PP	TUS	mg/L		76	10
FTA-MO6	19900522	PP	TDS	mg/L		86	10
FTA-MG6	19900522	METALS	ANTIMONY	ug/L	<	30	30
FTA-HO6	19900522	METALS	ARSENIC	ug/L	<	1	1
FTA-MO6	19900522	METALS	BARIUM	ug/L		46.8	5
FTA-MO6	19900522	METALS	BERYLLIUM	ug/L	<	1	1
FTA-MO6	19900522 19900522	METALS	CADMIUN	∪g/L	<	5 3.13	.01
FTA-MO6 FTA-MO6	19900522	METALS METALS	CHROMIUM	ang/L ug/L	<	16	10
FTA-MO6	19900522	METALS	COPPER	UU/L	•	12.7	10
FTA-MO6	19900522	METALS	IRON	ug/L		969	10
FTA-MO6	19900522	METALS	LEAD	ug/L	<	20	20
FTA-MO6	19900522	METALS	MAGNESIUM	ug/L		2620	30
FTA-MO6	19900522	HETALS	MANGANESE	ug/L		213	10
FTA-MO6	19900522	METALS	MERCURY	ug/L	<	.2 88	.2 15
FTA-HO6 FTA-HO6	19900522 19900522	METALS METALS	NICKEL POTASSIUM	ug/L mg/L		1.25	.5
FTA-NG6	19900522	METALS	SELENIUM	ug/L		1.23	1
FTA-MO6	19900522	METALS	SILVER	Ug/L	<	10	10
FTA-HO6	19900522	METALS	SILICA	mg/L		2.34	.1
FTA-MO6	19900522	METALS	MU1002	mg/L		4.78	.03
FTA-NO6	19900522	HETALS	THALLIUM	ug/L	<	30	30
FTA-MO6	19900522	METALS	ZINC AMMONIA NITROGEN	Ug/L		137	10
FTA-HO6 FTA-HO6	19900522 19900522	PP PP	OIL & GREASE	ag/L ag/L		.1	.01 1
FTA-MO6	19900522	PP	TOTAL PHENOLS	ug/L	<	5	5
FTA-NO6	19900522	PURGEABLE COMPO	ACROLEIN	ug/L	•	10	10
FTA-MG6	19900522	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-MO6	19900522	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
FTA-MG6	19900522	PURGEABLE COMPO	BROMOFORM	ug/L	<	5	5
FTA-MO6	19900522	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
FTA-MO6	19900522	PURGEABLE CGAPO	CARSON TETRACHLORIDE	ug/L	«	5	5 5
FTA-MO6 FTA-MO6	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	CHLOROBENZENE CHLOROD I BROMOMETHANE	ug/L ug/L	` `	5	5
FTA-NO6	19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L		ś	ś
FTA-MQ6	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-MO6	19900522	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-MO6	19900522	PURGEABLE COMPO	CHLORUMETHANE	ug/L	<	10	10
FTA-HO6	19900522	PURGEABLE COMPO	DICHLOROBROHOMETHANE	ug/L	<	5	5
FTA-MO6	19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
FTA-MO6 FTA-MO6	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	ug/L	*	5 5	5
FTA-NOS	19900522	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L ug/L	•	5	5
FTA-MO6	19900522	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	•	ś	5
FTA-HO6	19900522	PURGEABLE COMPO	1,1-DICHLORGETHENE	ug/L	4	5	Š
FTA-MO6	19900522	PURGEABLE COMPO	TRANS-1, 2-DICHLOROETHENE	ug/L	<	5	5
FTA-HO6	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
FTA-HO6	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-MO6	19900522	PURGEABLE COMPO	TRANS-1,3-01CHLOROPROPENE	ug/L	<	5	5
FTA-1406 FTA-1406	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	ETHYLBENZENE METHYLENE CHLORIDE	ug/L	«	5	5 10
FTA-MOS	19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L ug/L	` `	10 5	5
, , , , , , , , , , , , , , , , , , , ,		- underrees com o	ititata istumantanastungs	-4, 6	•	,	,

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO6	19900522	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5
FTA-MO6	19900522	PURGEABLE COMPO	TOLUENE	ug/L	` `	5	5
FTA-NO6	19900522	PURGEABLE COMPO	1,1,1-TRICHLORGETHANE	ug/L		9.7	5
FTA-MO6	19900522	PURGEABLE COMPO	1,1,2-TRICHLORGETHANE	ug/L	<	5	5
FTA-HO6	19900522	PURGEABLE COMPO	TRICHLORGETHENE	ug/L		170	5
FTA-H06	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-MO6	19900522	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
FTA-MO6	19900522	SURR COMP	1,2-DICHLOROETHAME-04-S	% ug/L		54.5	50
FTA-HO6	19900522	SURR COMP	TOLUENE-D8-S	% ug/L		45.8	5C
FTA-MO6	19900522	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		51.9	50
FTA-NO7	19900522	PHYSICAL	CONDUCTIVITY	umhos		30	0
FTA-MO7	19900522	PHYSICAL	TEMPERATURE	deg C		13.1	0
FTA-MO7 FTA-MO7	19900522 19900522	PP	WITRATES	mq/L		1.4	.2
FTA-HO7	19900522	PHYSICAL PP	PH ORTHOPHOSPHATE	ph //		5.15	0
FTA-MO7	19900522	PP	SULFATE	mg/L		.32 1.65	.2 .5
FTA-MO7	19900522	PP	CHEORIDE	mg/L mg/L		4.85	.5
FTA-HO7	19900522	PP	TOS	mg/L		62	10
FTA-MO7	19900522	METALS	ARTIHONY	ug/L	<	30	30
FTA-MO7	19900522	HETALS	ARSENIC	ug/L	ά.	1	1
FTA-MO7	19906522	METALS	BARIUM	ug/L	-	28.2	5
FTA-MO7	19900522	METALS	BERYLLIUM	ug/L	<	1	1
FTA-MO7	19900522	METALS	CADNIUM	ug/L	<	5	5
FTA-MO7	19900522	METALS	CALCIUM	mg/L		1.54	.01
FTA-MO7	19900522	METALS	CHROMEUM	ug/L	<	10	10
FTA-MO7	19900522	METALS	COPPER	ug/L		18	10
FTA-MO7	19900522	METALS	IRON	ug/L		384	10
FTA-MO7	19900522	METALS	LEAD	ug/L	<	20	20
FTA-MO7	19900522	HETALS	MAGNESIUM	ug/L		1430	30
FTA-MO7	19900522	HETALS	MANGANESE	ug/L		416	10
FTA-NO7	19900522	METALS	MERCURY	ug/L	<	.2	.2
FTA-HO7 FTA-HO7	19900522	METALS	MICKEL	ug/L		49.5	15
FTA-MO7	19900522 19900522	METALS METALS	POTASSIUM	mg/L	_	.671	.5
FTA-MO7	19900522	METALS	SELENIUM SILVER	ug/L	«	1 10	1 10
FTA-MO7	19900522	METALS	SILICA	ug/L mg/L	•	2.39	.1
FTA-HO7	19900522	METALS	SOUTUM	mg/L		4.52	.03
FTA-MO7	19900522	METALS	THALLIUM	ug/L	<	30	30
FTA-MO7	19900522	METALS	ZINC	ug/L		36.2	10
FTA-HO7	19900522	PP	AMMONIA NETROGEN	mg/L		.11	.01
FTA-MO7	19900522	PP	OIL & GREASE	mg/L		4	1
FTA-MO7	19900522	PP	TOTAL PHENOLS	ug/L	<	5	5
FTA-MO7	19900522	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-MO7	19900522	PURGEABLE COMPO	ACRYLOMITRILE	ug/L	<	10	10
FTA-NO7	19900522	PURGEABLE COMPO	BENZENE	ug/L	•	5	5
FTA-MO7 FTA-MO7	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	BROMOFORM Bromomethane	ug/L	«	5 10	. 5
FTA-HO7	19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L ug/L	``	5	10 5
FTA-MO7	19900522	PURGEABLE COMPO	CHLOROBENZENE	ug/L	· .	ś	ś
FTA-HO7	19900522	PURGEABLE COMPO	CHLOROD I BRONOMETHANE	ug/L	<	Ś	Ś
FTA-MO7	19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-HO7	19900522	PURGEABLE COMPO	CHLORGETHANE	ug/L	<	10	10
FTA-MO7	19900522	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-MU7	19900522	PURGEABLE COMPO	CHLCROMETHANE	ug/L	<	10	10
FTA-MO7	19900522	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L	<	5	5
FTA-HO7	19900522	PURGEABLE COMPO	1,2-PICHLOROBEHZENE	ug/L	<	5	5
FTA-HO7	19900522	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
FTA-MO7	19900522	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	•	5	5
FTA-MO7	19900522	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L		11 9	5
FTA-307	19900522	PURGEABLE COMPO	1,2-DICHLORGETHANE	ug/L	<	5	5
FTA-MO7	19900522	PURGEABLE COMPO	1,1-DICHEGROETHENE	ug/L		31.6	5
FTA-MO7 FTA-MO7	19900522 19900522	PURGEABLE COMPO	TRANS-1,2-DICHLORGETHENE	ug/L	•	5	5
FTA-MO7	19900522	PURGEABLE COMPO PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	< 	5	5
FTA-MG7	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE	ug/L	« «	5 5	5 5
FTA-MO7	19900522	PURGEABLE COMPO	ETHYLBENZEHE	ug/L ug/L		5	5
FTA-MO7	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	``	10	10
FTA-HO7	19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLORGETHANE	ug/L	à	5	5
FTA-MO7	19900522	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L		44	5

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-NO7	19900522	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
FTA-MO7	19900522	PURGEASLE COMPO	1.1.1-TRICHLOROETHANE	ug/L		119	5
FTA-HC7	19900522	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
FTA-MO7	19900522	PURGEABLE COMPO	TRICHLOROETHENE	ug/L		219	5
FTA-MO7	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-MO7	19900522	PURGEABLE COMPO	VIHYL CHLORIDE	ug/L	<	10	10
FTA-MO7	19900522	SURR COMP	1,2-DICHLGROETHANE-D4-S	% ug/L		53.7	50
FTA-MO7	19900522	SURR COMP	TOLUENE-D8-S	% ug/L		47.4	50
FTA-MO7	19900522	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		44.3	50
FTA-MOS	19900522	PHYSICAL	COMPUCTIVITY	umhos		53	0
FTA-HO8	19900522	PHYSICAL	TEMPERATURE	deg C		16.1	0
FTA-MO8	19900522	PP	NITRATES	mg/L		2.1	.2
FTA-MOS	19900522	PHYSICAL	pH	ph		4.75	0
FTA-MOS	19900522	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-HO8	19900522	PP	CULFATE	mg/L		5.28	. 5
FTA-MO8	19900522	PP	PALORIDE	mg/L		8.84	2
FTA-MO8	19900522	PP	TDS	mg/L		78	10
FTA-HO8	19900522	METALS	ANTIMONY	ug/L	<	30	30
FTA-HOS	19900522	METALS	ARSENIC	ug/L	<	1	1
FTA-MO8	19900522	METALS	BARIUM	ug/L		48.5	5
FTA-MC8	19900522	METALS	BERYLLIUM	ug/L	<	1	1
FTA-MO8	19900522	METALS	LECHTUM	ug/L	<	5	5
FTA-MOS	19900522	METALS	CALCIUM	mg/L		2.95	.01
FTA-MOS	19900522	METALS	CHRONIUM	ug/L	<	10	10
FTA-MO8	19900522	METALS	COPPER	ug/L		16	10
FTA-HO8	19900522	METALS	IRON	ug/L		630	10
FTA-MO8	19900522	METALS	LEAD	ug/L	<	20	20
FTA-MO8	19900522	METALS	MAGNESIUM	ug/L		2350	30
FTA-MOS	19900522	METALS	MANGANESE	ug/L		113	10
FTA-MOS	19900522	METALS	HERCURY	ug/L	<	.2	.2
FTA-MOS	19900522	METALS	NICKEL	ug/L		17.8	15
FTA-MOS	19900522	METALS	POTASSIUM	mg/L		1.08	.5
FTA-MOS	19900522	METALS	SELENIUM	ug/L		1.1	1
FTA-MOS	19900522	METALS	SILVER	ug/L	<	10	10
FTA-MOS	19900522	METALS	SILICA	mg/L		2.12	.1
FTA-HUS	19900522	METALS	SODIUM	mg/L		5.29	.03
FTA-MO8	19900522	METALS	THALLIUM	ug/L	<	30	30
FTA-HOS	19900522	METALS	ZINC	ug/L		56	10
FTA-MOS	19900522	₽₽	AMMONIA NITROGEN	mg/L		.11	.01
FTA-MOS	19900522	PP	OIL & GREASE	mg/L		5	1
FTA-MOS	19900522	۶P	TOTAL PHENOLS	ug/L	<	5	5
FTA-HOS	19900522	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-MO8	19900522	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-HOS	19900522	PURGEABLE COMPO	BENZENE	. ug/L	. <	5	5
FTA-MC8	19900522	PURGEABLE COMPO	BROMOFORM	ug/L	<	. 5	5
FTA-MOS	19900522	PURGEABLE COMPO	SROMOMETHANE	ug/L	<	10	10
FTA-HOS	19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
SOM-ATT	19900522	PURGEABLE COMPO	CHLOROBENZEHE	ug/L	<	5	5
FTA-MOS	19900522	PURGEABLE COMPO	CHLOROD I BROMOMETHANS	ug/L	<	5	5
FTA-MOS	19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-MOS	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/L	•	10	
FTA-HO8	19900522	PURGEABLE COMPO	CHLORGFORM	ug/L	<	5	
FTA-MOS	19900522	PURGEABLE COMPO	CHLOROMETHANE	ug/L		10	
FTA-HOS	19900522	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L		5	
FTA-HOS	19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L		5	
FTA-HOB	19900522	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L		5	
FTA-MOS	19900522	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L		5	5
FTA-HO8	19900522	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L		15	
FTA-HC8	19900522	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L		6.4 8.6	
FTA-MOS	19900522	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L		5.0	2
FTA-MOS	19900522	PURGEAGLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L		5	
FTA-MOS	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L		5	
FTA-HOS	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L		5	
FTA-HOS	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L		5	5
FTA-HOS	19900522	PURGEABLE COMPO	ETHYLBEHZENE	ug/L		10	
FTA-HOS	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE	ug/L		5	
FTA-HOS	19900522	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L ug/L		16.8	5
FTA-NOS	19900522	PURGEABLE COMPO	TOLUENE	_		5	
FTA-HC8	19900522	PURGEABLE COMPO	IGCUERE	ug/L	•	,	,

WELL #	DATE	HEAD ING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO8	19900522	PURGEABLE COMPO	1,1,1-TRICHLORGETHANE	ug/L		86.2	5
FTA-MOS	19900522	PURGEABLE COMPO	1,1,2-TRICHLORGETHANE	ug/L	<	5	5
FTA-MO8	19900522	PURGEABLE COMPO	TRIC LORGETHENE	ug/L		21.8	5
FTA-MOS	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-MUB	19900522	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
FTA-MC8	19900522	TENTATIVELY COM	CIS-1,2-DICHLORCETHENE	ug/L	VOA	17	0
F'A-M08	19900522	SURR COMP	1,2-DICHLOROETHANE-D4-S	X ug/L		51.2	50
FTA-MOS	19900522	SURR COMP	TOLUENE-D8-S	% ug/L		46.7	50
FTA-MO8	19900522	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		45.1	50
FTA-MO9	19900522	PHYSICAL	CONDUCTIVITY	umhos		150	ō
FTA-MO9	19900522	PHYSICAL	TEMPERATURE	deg C		18.4	ŏ
FTA-M09	19900522	PP	HITRATES	mg/L		1.6	.2
FTA-MO9	19900522	PHYSICAL	pit	ph		4.69	0
FTA-MO 9	19900522	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-MQ9	19900522	PP	SULFATE	mg/L		4.67	.5
FTA-MO9	19900522	PP	CHLORIDE	mg/L		37.9	2
FTA-MO9	19900522	PP	TOS	mg/L		120	10
FTA-MO9	19900522	METALS	ANTIMONY	Ug/L	<	30	30
FTA-NO9	19900522	METALS	ARSENIC	ug/L	<	1	1
FTA-M09	19900522	METALS	BARIUM	ug/L		73.5	5
FTA-M09	19900522	METALS	BERYLLIUM	ug/L	<	1	1
FTA-NO9	19900522	METALS	MUTHOAD	ug/L	<	5	Ś
FTA-MO9	19900522	METALS	CALCIUM	mg/L		4.6	.01
FTA-MO9	19900522	METALS	CHROMIUM	ug/L	<	10	10
FTA-MO9	19900522	METALS	COPPER	ug/L	<	10	10
FTA-MO9	19900522	METALS	IRON	ug/L		371	10
FTA-MO9	19900522	METALS	LEAD	ug/L	<	20	20
F1A-M09	19900522	METALS	MAGNESIUM	Ug/L		3580	30
FTA-MO9	19900522	METALS	MANGANESE	ug/L		192	10
FTA-H09	19900522	METALS	MERCURY	ug/L	<	.2	.2
FTA-MO9	19900522	METALS	MICKEL	ug/L		32.2	15
FTA-MO9	19900522	METALS	POTASSIUM	mg/L		1.3	.5
FTA-MO9	19900522	METALS	SELENIL .	ug/L	<	1	1
FTA-MOS	19900522	METALS	SILVER	ug/L	<	10	10
FTA-H09	19900522	METALS	SILICA	≋g/ L		1.74	.1
FTA-M09	19900522	METALS	SOC IUM	mg/L		10.8	.03
FTA-MO9	19900522	HETALS	THALLIUM	ug/L	<	30	30
FTA-HG9	19900522	METALS	ZINC	ug/L		23	10
FTA-HO9	19900522	PP	AMMONIA NITROGEN	mg/L		.1	.01
FTA-M09	19900522	PP	OIL & GREASE	mg/L		5	1
FTA-H09	19900522	PP	TOTAL PHENOLS	ug/L	<	5	5
FTA-H09	19900522	PURGTABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-MO9	19900522	PURGEABLE COMPO	ACRYLOMITRILE	ug/L	<	10	10
FTA-MO9	19900522	PURGEABLE COMPO	SENZENE	ug/L	<	5	5
FTA-MO9	19900522	PURGEABLE COMPO	BRONOFORM	ug/L	<	5	5
FTA-MO9	19900522	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
FTA-MO9 FTA-MO9	19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-HO9	19900522 19900522	PURGEABLE COMPO	CHLOROBEY THE	ug/L	<	5	5
FTA-MO9	19900522	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L	4	5	5
FTA-HO9	19900522	PURGEABLE COMPO PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER CHLOROFTHAME	Ug/L	<	5	5
FTA-HO9	19900522	PURGEABLE COMPO	CHLOROFORM	ug/L	•	10	10
FTA-MO9	19900522	PURGEABLE COMPO	CHEOROFORM	ug/L	<	5	5
FTA-MO9	19900522	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L	<	10	10
FTA-NO9	19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	*	5 5	5
FTA-MO9	19900522	PURGEABLE COMPO	1.3-DICHLOROSENZENE	U3/L	«	5	5
FTA-MC9	19900522	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	•	5	5
FTA-MO9	19900522	PURGEABLE COMPO	1,1-DICHLORGETHANE	ug/L			5
FTA-HO9	19900522	PURGEABLE COMPO	1,2-DICHLORGETHANE	ug/L ug/L	«	5 5	5 5
FTA-MO9	19900522	PURGEABLE COMPO	1,1-DICHLORGETHENE	ug/L	~	5	
FTA-MO9	19900522	PURGEABLE COMPO	TRANS-1,2-DICHLORGETHENE	ug/L	~	5	5 5
FTA-MO9	19900522	PURGEABLE COMPO	1,2-01CHLOROPROPANE	ug/L	~	5	5
FTA-HO9	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	``	5	5
FTA-MO9	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	•	5	5
FTA-MO9	19900522	PURGEABLE COMPO	ETHYLBENZENE	ug/L ug/L	~	5	
FTA-HO9	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	-	10	5 10
FTA-MO9	19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLORGETHANE	ug/L	``	5	10 5
FTA-H09	19900522	PURGEABLE COMPO	TETRACHLORGETHENE	ug/L	~	5	5
FTA-H09	10900522	PURGEABLE COMPO	TOLUENE	ug/L	~	ś	5
					-	•	,

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
574 400	19900522	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L		5.8	5
FTA-M09 FTA-M09	19900522	PURGEABLE COMPO	1,1,2-T-ICHLOROETHANE	ug/L	<	5	5
FTA-MO9	19900522	PURGEABLE COMPO	TRICHLOROETHENE	ug/L		13.5	5
FTA-MO9	19900522	PURGEABLE COMPO	TRICHLOROFLUCROMETHANE	ug/L	<	10	10
FTA-MO9	19900522	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
TTA-M09	19900522	SURR COMP	1,2-DICHLOROETHANE-D4-S	% ug/L		50.6	50
FTA-MO9	19900522	SURR COMP	TOLUENE-D8-S	% ug/L		45.4	50
FTA-H09	19900522	SURR COMP	4-BROMOFLUUPOBENZENE-S	% ug/L		55.6	50
FTA-M10	19900522	PHYSICAL	CONDUCTIVITY	umnos		32	0
FTA-H10	19900522	PHYSICAL	TEMPERATURE	deg C		13.8	0
FTA-M10	19900522	PP	HITRATES	rg/L		.57	.2
FTA-M10	19900522	PHYSICAL	pH	ph		5.05	0
FTA-M10	19900522	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-M10	19900522	PP	SULFATE	mg/L	<	.5	.5
FTA-M10	19900522	PP	CHLORIDE	mg/L		4.9	2 10
FTA-M10	19900522	PP	TDS	mg/L		110 30	30
FTA-M10	19900522	HETALS	ANTIHONY	ug/L	«	1	1
FTA-M10	19900522	METALS	ARSENIC	ug/L	•	24.2	5
FTA-M10	19900522	METALS	BARIUM	ug/L	<	1	í
FTA-M10	19900522	METALS	BERYLLIUM CADMIUM	ug/L	` `	Ś	Ś
FTA-M10	19900522	METALS	CALCIUM	ug/L mg/L	•	1.54	.01
FTA-M10	19900522	METALS	CALCIUM	mg/L		1.54	.01
FTA-M10	19900522	METALS	CHROMIUM	ug/t	<	10	10
FTA-M10	19900522	METALS	COPPER	ug/L		12.2	10
FTA-M10	19900522	METALS METALS	IRON	ug/L		102	10
FTA-H10	19900522	METALS	LEAD	ug/L	<	20	20
FTA-M10	19900522 19900522	METALS	MAGNESIUM	ug/L		740	30
FTA-M10 FTA-M10	19900522	HETALS	MAGNESIUM	ug/L		736	30
FTA-H10	19900522	METALS	MANGANESE	ug/L		26.5	10
FTA-M10	19900522	METALS	MERCURY	1/L	<	.2	.2
FTA-M10	19900522	METALS	NICKEL	ug/L	<	15	15
FTA-M10	19900522	METALS	POTASSIUM	mg/L		.585	.5
FTA-M10	19900522	METALS	POTASSIUM	mg/L		.576	
FTA-M10	19900522	METALS	SELENIUM	ug/L	<	1	1
FTA-M10	19900522	METALS	SILVER	ug/L	<	10	
FTA-M10	19900522	METALS	SILICA	mg/L		2.16	
FTA-M10	19900522	METALS	SODIUM	mg/L		4.2	
FTA-M10	19900522	METALS	SODIUM	mg/L		4.16	
FTA-M10	19900522	METALS	THALLIUM	ug/L		30	
FTA-M1D	19900522	METALS	ZINC	ug/L		21.2	
FTA-H10	19200522	PP	AMMONIA NITROGEN	mg/L		.13 7	
FTA-M10	19900522	PP	OIL & GREASE	mg/L		5	
FTA-M10	19900522	PP	TOTAL PHENOLS ACROLEIN	ug/L		10	
FTA-H10	19900522	PURGEABLE COMPO	ACRYLONITRILE	ug/L ug/L		10	
FTA-H10	19900522	PURGEABLE COMPO	BENZENE	עפַ/נ עפַ/נ		5	
FTA-M10	19900522	PURGEABLE COMPO PURGEABLE COMPO	BROMOFORM	ug/i		Ś	
FTA-M10	19900522	PURGEABLE COMPO	BROMOMETHANE	ug/L		10	
FTA-M10	19900522 19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L		5	
FTA-M10	19900522	PURGEABLE COMPO	CHLOROBENZENE	ug/L		5	5
FTA-M10 FTA-M10	19900522	PURGEABLE COMPO	CHLOROD I BRONOMETHANE	ug/L		9	
FTA-M10	19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L		5	5
FTA-M10	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/L			
FTA-M10	19900522	PURGEABLE COMPO	CHLOROFORM	ug/l	. «		
FTA-H10	19900522	PURGEABLE COMPO	CHLOROMETHANE	ug/l	. <		
FTA-M10	19900522	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/l			5
FTA-H10	19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/t			5
FTA-M10	19900522	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/l			
FTA-M10	19900522	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/i			5
FTA-M10	19900522	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/l			5 5
FTA-M10	19900522	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/l			5 5 5
FTA-H10	19900522	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/l			5 5 5 5
FTA-1:10	19900522	PURGENBLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/l			5 5
FTA-K10	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/l	-		5 5 5 5
FTA-H10	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/l	-		5 5
FTA-H10	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE	ug/l			5 5
FTA-H10	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/i ug/i	-		
FTA-M10	19900522	PURGEABLE COMPO	MEINITERE CHECKIDE	Ug/	• `		- 10

WELL #	DATE	HEAD ING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-M10	19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	<	5	5
FTA-H10	19900522	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5
FTA-M10	19900522	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
FTA-M10	19900522	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5
FTA-M10	19900522	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
FTA-M10	19900522	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
FTA-M10	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-M10	19900522	PURGEABLE COMPO	VINTL CHLORIDE	ug/L	<	10	10
FTA-M10	19900522	SURR COMP	1,2-DICHLOROETHANE-D4-S	% ug/L		55.8	50
FTA-M10	19900522	SURR COMP	TOLUENE-D8-S	% ug/L		44.3	50
FTA-M10	19900522	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		54.8	50
FTA-M11	19900522	PHYSICAL	CONOUCT!YITY	umnos		60	0
FTA-M11	19900522	PHYSICAL	TEMPERATURE	deg C		13.8	Ö
FTA-H11	19900522	PP	NITRATES	mg/L		1.92	.2
FTA-H11	19900522	PHYSICAL	pH	ph		4.81	0
FTA-H11	19900522	P P	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-M11	19900522	₽₽	SULFATE	mg/L		16.6	.5
FTA-H11	19900522	PP	CHLORIDE	mg/L		2.64	2
FTA-M11	19900522	PP	TOS	mg/L		60	10
FTA-H11	19900522	METALS	YHOMITHA	ug/L	<	30	30
FTA-M11	19900522	METALS	ARSENIC	ug/L	<	1	1
FTA-M11	19900522	METALS	BARIUM	ug/l		39.2	5
FTA-M11	19900522	METALS	BERYLLIUM	ug/L	<	1	1
FTA-H11	19900522	METALS	CADMIUM	ug/l	<	5	5
FTA-H11	19900522	METALS	CALCIUN	mg/L		3.29	.01
FTA-M11	19900522	METALS	CHROMIUM	ug/L	<	10	10
FTA-H11	19900522	METALS	COPPER	ug/L	<	10	10
FTA-H11	19900522	METALS	IRON	ug/L		71.8	10
FTA-M11	19900522	METALS	LEAD	ug/L	<	20	20
FTA-H11	19900522	METALS	MAGNESIUM	ug/L		2460	30
FTA-H11	19900522	METALS	MANGANESE	ug/L		224	10
FTA-H11	19900522	METALS	MERCURY	ug/L	<	.2	.2
FTA-M11	19900522	METALS	MICKEL	ug/L		35.5	15
FTA-H11	19900522	METALS	POTASSIUM	mg/L		.878	.5
FTA-H11	19900522	METALS	SELENIUM	ug/L	<	1	1
FTA-H11	19900522	METALS	SILVER	ug/L	<	10	10
FTA-M11	19900522	METALS	SILICA	mg/L		1.51	.1
FTA-H11	19900522	METALS	SODIUM	mg/L		2.56	.03
FTA-H11	19900522	METALS	THALLIUM	ug/L	<	30	30
FTA-M11	19900522	METALS	ZINC	ug/L		21.5	10
FTA-H11	19900522	PP	AMMONIA HITROGEN	mg/L		. 13	.01
FTA-M11	19900522	PP	OIL & GREASE	mg/L		4	1
FTA-M11	19900522	PP	TOTAL PHENOLS	ug/L	<	5	5
FTA-M11 FTA-M11	19900522	PURGEABLE COMPO	ACROLEIN	ug/L	•	10	10
	19900522	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-M11	19900522 19900522	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
FTA-H11 FTA-H11	19900522	PURGEABLE COMPO PURGEABLE COMPO	BROMOFORM Bromomethane	ug/L	«	5	5 10
FTA-M11	19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	10 5	5
FTA-M11	19900522	PURGEABLE COMPO	CALOROBENZENE	ug/L	«	ś	5
FTA-M11	19900522	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L		5	5
FTA-M11	19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L ug/L	``	5	5
FTA-H11	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/L	<u> </u>	10	10
FTA-H11	19900522	PURGEABLE COMPO	CHLOROFORM	ug/L	₹	5	5
FTA-H11	19900522	PURGEABLE COMPO	CHLOROMETHANE	ug/L	₹	10	10
FTA-H11	19900522	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L	₹	5	5
FTA-H11	19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	•	5	5
FTA-H11	19900522	PURGEABLE COMPO	1,3-DICHLOROSENZENE	ug/L	<	5	5
FTA-H11	19900522	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	5	5
FTA-H11	19900522	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	<	5	5
FTA-H11	19900522	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-M11	19900522	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	<	5	Š
FTA-H11	19900522	PURGEABLE COMPO	TRANS-1,2-DICHLORGETHENE	ug/L	<	5	5
FTA-H11	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
FTA-H11	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-M11	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	<	Š	5
FTA-H11	19900522	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5
FTA-M11	19900522	PURGEABLE COMPO	METHYLEME CHLORIDE	ug/L	<	10	10
FTA-H11	19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	•	5	5

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-M11	19900522	PURGEABLE COMPO	TETRACHLOROZTHENE	ug/L	<	5	5
FTA-M11	19900522	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
FTA-M11	19900522	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5
FTA-M11	19900522	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
FTA-H11	19900522	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
FTA-M11	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-H11	19900522	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	. <	10	10 50
FTA-M11	19900522	SURR COMP	1,2-DICHLOROETHANE-D4-S	% ug/L % ug/L		51.7 44.5	50
FTA-H11	19900522	SURR COMP SURR COMP	TOLUENE-D8-S 4-BROMOFLUOROBENZENE-S	% ug/L		40	50
FTA-N11	19900522 19900522	PHYSICAL	CONDUCTIVITY	umhos		20	Õ
FTA-M12 FTA-M12	19900522	PHYSICAL	TEMPERATURE	deg C		13.4	Ō
FTA-N12	19900522	PP	NITRATES	mg/L		.21	.2
FTA-H12	19900522	PHYSICAL	pH	ph		5.59	0
FTA-H12	19900522	PP	STHOPHOSPHATE	mg/L	<	.2	.2
FTA-M12	19900522	PP	SULFATE	mg/L	<	.5	.5
FTA-H12	19900522	PP	CHLORIDE	mg/L		5.16	2 10
FTA-M12	19900522	PP	TDS	mg/L	<	48 30	30
FTA-M12	19900522	METALS	ANTIMONY ARSENIC	ug/L ug/L	` ` `	1	1
FTA-M12	19900522 19900522	METALS METALS	BARIUM	ug/L	•	20.2	5
FTA-H12 FTA-H12	19900522	METALS	BERYLLIUM	ug/L	<	1	1
FTA-H12	19900522	METALS	CADITUM	ug/L	<	5	5
FTA-M12	19900522	METALS	CALCIUM	mg/L		1.07	.01
FTA-M12	19900522	METALS	CHROMEUM	ug/L	<	10	10
FTA-M12	19900522	METALS	COPPER	ug/L		10.8	10
FTA-M12	19900522	METALS	IRON	ug/L		68.2	10
FTA-M12	19900522	METALS	LEAD	ug/L	<	20	20 30
FTA-M12	19900522	HETALS	MAGNESIUM	ug/L		781 127	10
FTA-M12	19900522	METALS METALS	MANGANESE MERCURY	ug/L ug/L	<	.2	.2
FTA-M12 FTA-M12	19900522 19900522	METALS	NICKEL	ug/L	•	15.8	15
FTA-M12	19900522	METALS	POTASSIUM	mg/L		.605	.5
FTA-H12	19900522	METALS	SELENIUM	ug/L	<	1	1
FTA-M12	19900522	METALS	SILVER	ug/L	<	10	10
FTA-H12	19900522	METALS	SILICA	mg/L		2.3	.1
FTA-H12	19900522	METALS	SODIUM	mg/L	_	2.823	.03
FTA-M12	19900522	METALS	THALLIUM	ug/L		30 10	30 10
FTA-M12	19900522	METALS PP	ZINC AMMONIA NITROGEN	ug/L mg/L	•	.13	.01
FTA-M12 FTA-M12	19900522 19900522	99	OIL & GREASE	mg/L		.,,	1
FTA-M12	19900522	PP	TOTAL PHEMOLS	ug/L		Ś	5
FTA-H12	19900522	PURGEABLE COMPO	ACROLEIN	ug/L		10	10
FTA-H12	19900522	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-H1Z	19900522	PURGEABLE COMPO	BENZENE	ug/L		5	5
FTA-M12	19900522	PURGEABLE COMPO	BROMOFORM	ug/L		5	5
FTA-H12	19900522	PURGEABLE COMPO	BROHOMETHANE	ug/L		10 5	10 5
FTA-H12	19900522 19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE CHLOROBENZENE	ug/L ug/L		5	5
FTA-H12 FTA-H12	19900522	PURGEABLE COMPO PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L		5	Ś
FTA-M12	19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L		5	_
FTA-M12	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/L		10	10
FTA-M12	19900522	PURGEABLE COMPO	CHLOROFORM	ug/L	. <	5	
FTA-H12	19900522	PURGEABLE COMPO	CHLOROMETHANE	ug/L		10	
FTA-H12	19900522	PURGEABLE COMPO	DICHLOROBROHOMETHANE	ug/L		5	
FTA-H12	19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L		5 5	
FTA-M12	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	1,3-01CHLOROBENZENE 1,4-01CHLOROBENZENE	ug/l ug/l		5	5
FTA-M12	19900522	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L		5	5
FTA-M12 FTA-M12	19900522	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L		5	
FTA-M12	19900522	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L		5	5
FTA-H12	19900522	PURGEABLE COMPO	TRANS-1, 2-DICHLOROETHENE	ug/L		5	5
FTA-H12	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L		5	
FTA-H12	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/l		5	
FTA-M12	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L		5	
FTA-M12	19900522	PURGEABLE COMPO	ETHYLBENZENE	ug/L		5 10	
FTA-M12	19900522	PURGEABLE COMPO PURGEABLE COMPO	METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE	ug/l ug/l	•	5	
FTA-H12 FTA-H12	19900522 19900522	PURGEABLE COMPO	TETRACHLOROETHENE	ug/l		Ś	
FIA-MIE	17700766	rundender confu				-	•

WELL #	DATE	HEADING	PARAMETER	TIMU	VALUE	DET	DET LIM
FTA-H12	19900522	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
FTA-H12	19900522	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5
FTA-M12	19900522	PURGEABLE COMPO	1,1,2-TRICHLORDETHANE	ug/L	<	5	5
FTA-H12	19900522	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
FTA-M12	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-N12	19900522	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
FTA-M12	19900522	SURR COMP	1,2-DICHLORGETHANE-D4-S	% ug/L		42.6	50
FTA-M12	19900522	SURR COMP	TOLUENE-08-S	% ug/L		45.2	50
FTA-H12	19900522	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		51.5	50
81040	19900522	PHYSICAL	COMPUCTIVITY	uminos		50	0
B1040	19900522	PHYSICAL	TEMPERATURE	deg C		13.3	0
81040	19900522	PP	NITRATES	mg/L		2.06	.2
B1040	19900522	PHYSICAL	p#	ph	_	5.87	0
B1046	19900522	PP	ORTHOPHOSPHATE	mg/L	< <	.2 .5	.2 .5
B1040	19900522	PP	SULFATE	mg/L	•	13	2
B1040	19900522	PP	CHLORIDE TDS	mg/L		. 74	10
81040	19900522 19900522	PP METAL C	VIONITIA	mg/L ug/L	<	30	30
81040	19900522	METALS	ARSENIC	ug/L	` `	1	1
81040 81040	19900522	METALS METALS	BARIUM	ug/L	•	28	5
81040 81040	19900522	METALS	SERYLLIUM	ug/L	<	1	1
B1040	19900522	METALS	CADMIUM	ug/L	` `	Ś	Ś
B1040	19900522	METALS	CALCIUM	mg/L	•	3.29	.01
81040	19900522	METALS	CHRONIUM	ug/L	<	10	10
81040	19900522	METALS	COPPER	ug/L	-	24.5	10
B1040	19900522	METALS	IRON	ug/L		1190	10
B1040	19900522	METALS	LEAD	ug/L	. <	20	20
B1040	19900522	HETALS	MAGNESIUM	ug/L		1660	30
B1040 .	19900522	METALS	MANGANESE	ug/L		138	10
81040	19900522	METALS	HERCURY	ug/L	<	.2	.2
21040	19900522	METALS	NICKEL	ug/L	<	15	15
B1040	19900522	METALS	POTASSIUM	mg/L		1.89	.5
81040	19900522	PETALS	SELENIUM	ug/L	<	1	1
91040	19900522	METALS	SILVER	ug/L	<	10	10
B1040	19900522	METALS	SILICA	mg/L		1.64	.1
B1040	19900522	METALS	SODIUM	mg/L		3.94	.03
B1040	19900522	METALS	THALLIUM	ug/L	<	30	30
B1040	19900522	METALS	ZINC	ug/L		21.2	10
81040	19900522	PP	AMMONIA NITROGEN	mg/L		.25	.01
81040	19900522	PP	OIL & GREASE	mg/L	_	10	1
B1040	19900522	PP	TOTAL PHENOLS	ug/L	«	5 10	5 10
B104G	19900522	PURGEABLE COMPO	ACROLEIN ACRYLONITRILE	ug/L	«	10	10
81040	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	BENZENE	ug/L ug/L	` `	5	5
81040 81040	19900522	PURGEABLE COMPO	BROMOFORM	ug/L		Ś	ś
B1040	19900522	PURGEABLE COMPO	BROMONETHANE	ug/L	ά.	10	10
81040	19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
B1040	19900522	PURGEABLE COMPO	CHLOROSENZENE	-g/L	<	5	5
81040	19900522	PURGEABLE COMPO	CHLOROD I SECMOMETHANE	ug/L	<	5	5
81040	19900522	PURGEABLE COMPO	2-CHLOROSTHYLVINYL ETHER	ug/L	<	5	5
81040	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
81040	19900522	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5
B1040	19900522	PURGEABLE COMPO	CHEGROMETHANE	ug/L	<	10	10
B1040	19900522	PURGEABLE COMPO	DICHLOROBREMOMETHANE	ug/L	<	5	5
B1040	19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
B1040	19900522	PURGEABLE COMPO	1,3-DICHLOROSENZENE	ug/L	•	5	5
B1040	19900522	PURGEABLE COMPO	1,4-DICHLOROBEHZENE	ug/L	<	5	5 5
31040	19900522	PURGEABLE COMPO	1,1-0 ICHLOROETHANE	ug/L	<	5 5	5
81040 81040	19900522	PURGEABLE COMPO PURGEABLE COMPO	1,2-DIEMLOROETHANE 1,1-DIEMLOROETHENE	ug/L	«	5	5
81040 81040	19900522 19900522	PURGEABLE COMPO	TRANS-1,2-DICHEOROETHENE	ug/L ug/L	•	5	5
81040	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	``	5	ś
81040	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L		Ś	ś
B1040	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	·	Ś	Ś
81040	19900522	PURGEABLE COMPO	ETHYLBENZENE	ug/L	· .	5	ś
B1040	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	•	10	10
81040	19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	<	5	5
B1040	19900522	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5
81040	19900522	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5

WELL #	DATE	HEAD ING	PARAMETER	UNIT	VALUE	DET	DET LIM
B1040	19900522	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5
B1040	19900522	PURGEABLE COMPO	1,1,2-TRICHLOROETHAME	ug/L	<	Š	5
81040	19900522	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
B1040	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
81040	19900522	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
81040	19900522	SURR COMP	1,2-DICHLOROETHANE-04-S	% ug/L		52.6	50
B1040	19900522	SURR COMP	TOLUENE-08-S	% ug/L		49.2	50
B1040	19900522	SURR COMP	4-BRONOFLUOROBENZENE-S	% ug/L		50.6	50
B1041	19900522	PHYSICAL	CONDUCTIVITY	umnos		45	0
B1041	19900522	PHYSICAL	TEMPERATURE	deg C		13	0
B1041	19900522	PP	NITRATES	mg/L		_ 1	.2
81041	19900522	PHYSICAL	PH	ph		5.25	.2
B1041	19900522	PP	ORTHOPHOSPHATE	mg/L	<	.2	.5
81041	19900522	PP	SULFATE	mg/L		3.06	.5
81041	19900522 19900522	PP PP	CHLORIDE TDS	ng/L		25.1 74	10
81041 81041	19900522	METALS	ANTIHONY	mg/L ug/L	<	30	30
81041	19900522	KETALS	ARSENIC	ug/L	` `	1	1
B1041	19900522	METALS	BARIUM	ug/L	•	25.5	Ś
B1041	19900522	METALS	BERYLLIUM	ug/L	<	1	1
B1041	19900522	HETALS	CADMIUM	ug/L	<	5	5
B1041	19900522	METALS	CALCIUM	mg/L		2.99	.01
B1041	19900522	METALS	CHROMIUM	ug/L	<	10	10
B1041	19900522	METALS	COPPER	ug/L		20.8	10
B1041	19900522	METALS	IRON	ug/L		170	10
B1041	19900522	METALS	LEAD	ug/L	<	20	20
B1041	19900522	HETALS	MAGNESIUM	ug/L		1470	30
B1041	19900522	METALS	MANGANESE	ug/L		155	10
B1041	19900522	METALS	MERCURY	ug/L	<	.2	.2
B1041	19900522	METALS	NICKEL	ug/L		19	15
B1041	19900522	METALS	POTASSIUM	mg/L	_	.852	.5
B1041	19900522 19900522	METALS	SELENIUM	ug/L	< <	1 10	1 10
81041 81041	19900522	METALS METALS	SILVER SILICA	ug/L mg/L	`	.142	.1
B1041	19900522	METALS	SODIUM	mg/L		3.64	.03
81041	19900522	METALS	THALLIUM	ug/L	<	30	30
81041	19900522	METALS	ZINC	ug/L		17	10
B1041	19900522	PP	APHONIA NITROGEN	mg/L		.45	.01
B1041	19900522	PP	OIL & GREASE	mg/L		9	1
81041	19900522	PP	TOTAL PHENGLS	ug/L	<	5	5
81041	19900522	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
B1041	19900522	PURGEABLE COMPO	ACRYLOWITRILE	ug/L	<	10	10
81041	19900522	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
B1041	19900522	PURGEABLE COMPO	BROMOFORM	ug/L	<	5	5
91041	19900522	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
B1041	19900522	PURGEABLE COMPO	CARSON TETRACHLORIDE	ug/L	<	5	5
81041	19900522	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
B1041	19900522	PURGEABLE COMPO	CHLORODIBROHOMETHANE	ug/L	<	5	5
81041	19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
81041	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
81041 81041	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	CHLOROFORM CHLOROMETHANE	ug/L ug/L	< <	5 10	5 10
81041	19900522	PURGEABLE COMPO	DICHLOROBROMOMETHANE	ug/L	` `	5	5
B1041	19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	` ` `	ś	5
B1041	19900522	PURGEABLE COMPO	1,3-01CHLOROBENZENE	ug/L	<	5	Ś
B1041	19900522	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	5	5
81041	19900522	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	<	Š	5
B1041	19900522	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
B1041	19900522	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	<	5	5 5 5 5
81041	19900522	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L	<	5	5
B1041	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
81041	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	<	5	5
B1041	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	<	5	5
81041	19900522	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5
B1041	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
B1041	19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLORUETHANE	ug/L	<	5	5
81041 81041	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	TETRACHLOPOETHENE TOLUENE	ug/L	< <	5 5	5 5
B1041	19900522	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	· ·	5	5
# (Um (17700766	PORGENOLE COMPU	I, I, I TRIGHTORUS IMARS	ug/L	•	,	J

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
B1041	19900522	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
B1041	19900522	PURGEABLE COMPC	TRICHLORGETHENE	ug/L	<	5	5
B1041	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
B1041	19900522	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
B1041	19900522	SURR COMP	1,2-DICHLOROETHANE-D4-S	% ug/L		53.5	50
81041 B1041	19900522 19900522	SURR COMP SURR COMP	TOLUENE-D8-S 4-BROMOFLUOROBENZENE-S	% ug/L		53.9 47.6	50 50
TRIP BLANK	19900522	PURGEABLE COMPO	ACROLEIN	% ug/L ug/L	<	10	10
TRIP BLANK	19900522	PURGEABLE COMPO	ACRYLONITRILE	ug/L	` `	10	10
TRIP BLANK	19900522	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	BROMOFORM	ug/L	<	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	BROWNETHANE	ug/L	<	10	10
TRIP BLANK	19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
TRIP BLANK	19400522	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	BROMODICHLOROMETHANE	ug/L	<	5	5
TRIP BLANK TRIP BLANK	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	CHLORODIBROMOMETHANS 2-CHLOROETHYLVINYL ETHER	ug/L	<	5 10	5 10
TRIP BLANK	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/L ug/L	< <	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	CHLOROFORM	ug/L	~	10	10
TRIP BLANK	19900522	PURGEABLE COMPO	CHLOROMETHANE	ug/L		5	5
TRIP BLANK	19900522	PURGEABLE COMPO	DICHLGROBROMOMETHANE	ug/L	<	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	1,4-DICHLOROSENZENE	ug/L	<	5	5 5 5
TRIP BLANK	19900522	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	<	5	
TRIP BLANK	19900522	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5 5
TRIP BLANK TRIP BLANK	19900522 19900522	PURGEABLE COMPO PURGEABLE COMPO	1,1-DICHLORGETHENE TRANS-1,2-DICHLORGETHENE	ug/l	«	5 5	5
TRIP BLANK	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L ug/L	` `	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug, L	<	5	ś
TRIP BLANK	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	<	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
TRIP BLANK TRIP BLANK	19900522 19900522	PURGEABLE COMPO PUNGEABLE COMPO	1,1,2,2-TETRACHLORGETHANE TETRACHLORGETHENE	ug/L	«	5 5	5 5
TRIP BLANK	19900522	PURGEABLE COMPO	TOLUENE	ug/L ug/L	~	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	1,1,1-TRICHLORGETHANE	ug/L		5	ś
TRIP BLANK	19900522	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
TRIP BLANK	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
TRIP BLANK	19900522	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
TRIP BLANK	19900522	SURR COMP	1,2-DICHLOROETHANE-D4-S	% ug/L		48	50
TRIP BLANK	19900522	SURR COMP	TOLUENE-D8-S	% ug/L		44.7	50
TRIP SLANK	19900522	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		53.5	50
BLANK 1 Blank 1	19900522 19900522	ዖ ዎ ዖ ዖ	NITRATES ORTHOPHOSPHATE	mg/L	٧	.2	.2
BLANK 1	19900522	PP	SULFATE	mg/L mg/L	< <	.2 .5	.2 .5
BLANK 1	19900522	PP	CHLORIDE	mg/L	· .	.2	. 2
BLANK 1	19900522	PP	TDS	mg/L	<	10	10
BLANK 1	19900522	METALS	ANTIMONY	ug/L	<	30	30
BLANK 1	19900522	METALS	ARSENIC	ug/L	<	1	1
BLANK 1	19900522	METALS	SARIUM	ug/L		13.5	5
BLANK 1 Blank 1	19900522 19900522	METALS METALS	BERYLLIUM	ug/L	«	1	1
BLANK 1	19900522	METALS	CADHTUM CALCIUM	ug/L mg/L	<	5 .367	.01
BLANK 1	19900522	METALS	CHRONIUM	ug/L	<	10	10
BLANK 1	19900522	METALS	COPPER	ug/L	•	14.2	10
BLANK 1	19900522	METALS	IROW	ug/L		194	10
BLANK 1	19900522	METALS	LEAD	ug/L	<	20	20
BLANK 1	19900522	METALS	MAGNESTUN	ug/L		49.5	30
BLANK 1	19900522	METALS	MANGANESE	ug/L	<	10	10
BLANK 1 Blank 1	19900522 19900522	METALS METALS	MERCURY NICKEL	ug/L	•	.2 15	.2
BLANK 1	19900522	METALS	POTASSIUM	ug/L mg/L	«	.5	15 .5
BLANK 1	19900522	METALS	SELENTUM	ug/L	` `	.,	1
BLANK 1	19900522	METALS	SILVER	ug/L	•	10	10
BLANK 1	19900522	METALS	SILICA	mg/L		. 134	.1
BLANK 1	19900522	METALS	SOD TUM	mg/L		.844	.03
BLANK 1	19900522	METALS	THALLIUM	ug/L	<	30	30

WELL	#	DATE	HEADING	PARAMETER	UNIT \	ALUE	DET D	ET LIM
BLANK	1	19900522	METALS	ZIHC	ug/l	. «		10
BLANK		19900522	PP	AMMONIA WITROGEN	mg/l	•	.11	.01
BLANK		19900522	PP	OIL & GREASE	mg/l		6	1
BLANK		19900522	PP	TOTAL PHENOLS	ug/l	. <	-	5
BLANK		19900522	PURGEABLE COMPO	ACROLEIN	ug/l	. <		
BLANK		19900522	PURGEABLE COMPO	ACRYLONITRILE	ug/l	. <		
BLANK	1	19900522	PURGEABLE COMPO	BENZENE	ug/l	. <	_	
BLANK	1	19900522	PURGEABLE COMPO	BRONGFORM	ug/i		-	5
BLANK	1	19900522	PURGEABLE COMPO	BROMOMETHANE	ug/			
BLANK		19900522	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/1		-	
BLANK	1	19900522	PURGEABLE COMPO	CHLOROBENZENE	ug/			5
BLANK		19900522	PURGEABLE COMPO	BROMODICHLOROMETHANE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	CHLOROD I BROHOMETHANE	ug/		-	
BLANK		19900522	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/			
BLANK	1	19900522	PURGEABLE COMPO	CHLOROETHANE	ug/		-	
BLANK	1	19900522	PURGEABLE COMPO	CHLOROFORM	ug/			
BLANK		19900522	PURGEABLE COMPO	CHLOROMETHANE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	DICHLOROSROMOETHANE		•	-	
BLANK	1	19900522	PURGEABLE COMPO	1,2-01CHLOROBENZENE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/			
BLANK		19900522	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/			5
BLANK	1	19900522	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	ETHYLBENZENE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/			
BLANK	. 1	19900522	PURGEABLE COMPO	TETRACHLOROETHENE	ug/		_	
BLANK	1	19900522	PURGEABLE COMPO	TOLUENE	ug/			
BLANK	1	19900522	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/	-	5	
BLANK	1	19900522	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/	-	5	
BLANK	1	19900522	PURGEABLE COMPO	TRICHLOROETHENE	ug/	-	. 5	
BLANK	. 1	19900522	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/	-	: 10	
BLANK	(1	19900522	PURGEABLE COMPO	VINYL CHLORIDE	ug/	-	10	
BLANK	1	19900522	SURR COMP	1,2-DICHLOROETHANE-D4-S	% ug/		54	
BLANK	: 1	19900522	SURR COMP	TOLUENE-D8-S	% ug/		48.7	
BLANK	(1	19900522	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/	L	56.9	50

APPENDIX O

GROUND-WATER CHEMICAL DATA FOR SAMPLE ROUND 3
JULY 1990

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
	10000718	DUVETCAL	pH	ph		5.18	0
FTA-MO1	19900718 19900718	PHYSICAL PHYSICAL	CONDUCTIVITY	umhos		120	Ō
FTA-MO1	19900718	PHYSICAL	TEMPERATURE	deg C		17.9	0
FTA-MO1 FTA-MO1	19900718	PP	NITRATES	mg/L		1.46	.2
FTA-MO1	19900718	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-MO1	19900718	PP	SULFATE	mg/L		28.1	.5
FTA-MO1	19900718	P P	CHLORIDE	mg/L		11.4	2
FTA-HO1	19900718	PP	TDS	ing/L		144	10
FTA-HO1	19900718	PP	OIL & GREASE	mg/L	<	5	5
FTA-MO1	19900718	ACID EXTRACT	PHENOLS	ug/L	<	5	5
FTA-MO1	19900718	NETALS	ANTIHONY	ug/L	<	30	30
FTA-HO1	19900718	METALS	ARSENIC	ng/L	<	1	1 10
FTA-HO1	19900713	METALS	BARIUM	ug/L	<	10	10
FTA-MO1	19900718	METALS	BERYLLIUM	ug/L	< <	5	5
FTA-HO1	19900718	METALS	CADRIUM CALCIUM	ug/L mg/L	`	11.8	.01
FTA-HO1	19900718	METALS	CHROMIUM	ug/L	<	10	10
FTA-HO1	19900718	METALS METALS	COPPER	ug/L	<	10	10
FTA-HO1	19900718 19900718	METALS	IRON	ug/L		231	10
FTA-HO1 FTA-HO1	19900718	METALS	LEAD	ug/L	<	20	20
FTA-MO1	19900718	METALS	MAGNESIUM	Ug/L		2700	30
FTA-HOT	19900718	METALS	MANGANESE	ug/L	<	10	10
FTA-MO1	19900718	METALS	HERCURY	ug/L	<	.2	.2
FTA-MO1	19900718	METALS	NICKEL	ug/L	<	15	15
FTA-HO1	19900718	METALS	POTASSIUM	mg/L		1.48	.1
FTA-MO1	19900718	METALS	SELENIUM	ug/L	<	. 1	1
FTA-MO1	19900718	METALS	SILVER	ug/L	<	10	10
FTA-HO1	19900718	METALS	SILICON	mg/L		.897	.1
FTA-HO1	19900718	METALS	SCOTUM	mg/L	_	9.83	.03
FTA-HO1	19900718	METALS	THALLIUM	ug/L	<	30	30 10
FTA-1101	19900718	METALS	ZINC	ug/L	_	192	.1
FTA-MO1	19900718	pp	AMMONIA HITROGEN	mg/L	«	. 1 10	10
FTA-HO1	19900718	PURGEABLE COMPO	ACROLEIN ACRYLONITRILE	ug/L ug/L	` `	10	10
FTA-MO1	19900718	PURGEABLE COMPO	BENZENE	ug/L	À	5	5
FTA-MO1	19900718	PURGEABLE COMPO PURGEABLE COMPO	BROMODICHLOROMETHANE	ug/L	<	5	Š
FTA-MO1	19900718 19900718	PURGEABLE COMPO	BRONOFORM	ug/L	<	5	5
FTA-M01 FTA-M01	19900718	PURGEABLE COMPO	BRONONETHANE	ug/L	<	10	10
FTA-MO1	19900718	PURGEABLE COMPO	CARSON TETRACHLORIDE	ug/L	<	5	5
FTA-HO1	19900718	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
FTA-MO1	19900718	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L	<	. 5	5
FTA-MO1	19900718	PURGEABLE COMPO	CHLOROFTHANE	ug/L	<	10	10
FTA-HO1	19900718	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-MO1	19900718	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-M01	19900718	PURGEABLE COMPO	CHLOROHETHANE	ug/L	<	10	10 5
FTA-MO1	19900718	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5 5	5
FTA-HO1	19900718	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	«	5	5
FTA-HO1	19900718	PURGEABLE COMPO	1,4-DICHLOROSENZENE	ug/L	` `	5	Ś
FTA-HO1	19900718	PURGEABLE COMPO	1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	ug/L ug/L	` ` `	ś	Ś
FTA-MO1	19900718	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	₹	Ś	5
FTA-HO1	19900718	PURGEABLE COMPO PURGEABLE COMPO	TRANS-1, 2-DICHLORDETHENE	ug/L	<	5	5
FTA-MO1	19900718 19900718	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
FTA-HO1 FTA-HO1	19900718	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L		5	5
FTA-HO1	19900718	PURGEABLE COMPO	TRANS-1, 3-DICHLOROPROPENE	ug/L	<	5	5
FTA-HO1	19900718	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5
FTA-HO1	19900718	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-MO1	19900718	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L		5	5
FTA-HO1	19900718	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L		5	5
FTA-MO1	19900718	PURGEABLE COMPO	TOLUENE	ug/L		5	5
FTA-HO1	19900718	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L		5	5 5
FTA-MO1	19900718	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L		5	,
FTA-MO1	19900718	PURGEABLE COMPO	TRICHLOROETHENE	ug/L		5 10	5 10
FTA-MOT	19900718	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L		10	
FTA-HO1	19900718	PURGEABLE COMPO	VINYL CHLORIDE	ug/L		5	
FTA-MO1	19900718	PURGEABLE COMPO	XYLENES ETHYLMETHYLCYCLOPENTANE	ug/L ug/L		13	
FTA-MO1	19900718	TENTATIVELY COM	ETHYLMETHYLCYCLOPENTANE 1,2-DICHLOROETHANE-D4-S	% ug/L		83.6	
FTA-MO1	19900718	SURR COMP	TOLUENE-J8-\$	% ug/L		107	_
FTA-M01	19900718	JURA GUM	1000010 00 0				

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO1	19900718	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		87.8	50
FTA-MO2	19900719	PHYSICAL	pit	ph		5.3	ő
FTA-MO2 FTA-MO2	19900719 12900719	PHYSICAL PHYSICAL	CONDUCTIVITY	umhos		50	0
FTA-MO2	19900719	PP	TEMPERATURE MITRATES	deg C mg/L		.35	0
FTA-MOZ	19900719	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2 .2
FTA-MO2 FTA-MO2	19900719 19900719	PP	SULFATE	ing/L		19.7	.5
FTA-MUZ	19900719	PP PP	CHLORIDE TDS	mg/L		2.04	2
FTA-MO2	19900719	PP	OIL & GREASE	#g/L mg/L	<	114	10 5
FTA-MO2	19900719	ACID EXTRACT	PHENOLS	ug/L		5.3	5
FTA-MO2 FTA-MO2	19900719 19900719	METALS METALS	ANTIMONY	ug/L	∢	30	30
FTA-HO2	19900719	METALS	ARSENIC BARIUM	ug/L ug/L	«	1 10	1 10
FTA-MO2	19900719	HETALS	BERYLLIUM	ug/L		1	1
FTA-MO2	19900719	HETALS	CADHIUN	ug/L	•	5	5
FTA-NO2 FTA-NO2	19900719 19900719	METALS METALS	CALCIUM	mg/L		4.77	.01
FTA-MO2	19900719	METALS	CHRONEUM COPPER	ug/L ug/L	< <	10 10	10 10
FTA-MO2	19900719	METALS	IRON	ug/L		10	10
FTA-MOZ	19900719	METALS	LEAD	ug/L		46	20
FTA-MO2 FTA-MO2	19900719 19900719	METALS METALS	MUISSRAM	ug/L		3700	30
FTA-HO2	19900719	METALS	MANGANESE MERCURY	ug/L ug/L	< <	10 .2	10 .2
FTA-MO2	19900719	METALS	NICKEL	ug/L	₹	15	15
FTA-MO2 FTA-MO2	19900719	METALS	POTASSIUM	mg/L		.828	.1
FTA-MO2	19900719 19900719	METALS METALS	SELENIUM SILVER	ug/L	<	1	1
FTA-MO2	19900719	METALS	SILICON	ug/L mg/L	<	10 1.84	10 . 1
FTA-HO2	19900719	METALS	SODIUM	mg/L		3.19	.03
FTA-MO2 FTA-MO2	19900719 19900719	METALS METALS	THALLIUM	ug/L	•	30	30
FTA-MO2	19900719	PP	ZINC AMMONIA MITROGEN	ug/L mg/L	< <	10 .1	10 . 1
FTA-MO2	19900719	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-MO2 FTA-MO2	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	ACRYLOHITRILE	ug/L	<	10	10
FTA-MOZ	19900719	PURGEABLE COMPO	BENZENE BRONODICHLOROMETHANE	ug/L	< <	5 5	5 5
FTA-HOZ	19900719	PURGEABLE COMPO	SECHOFORM	ug/L ug/L	``	5	5
FTA-MO2	19900719	PURGEABLE COMPO	BRONOMETHANE	ug/L	<	10	10
FTA-NO2 FTA-NO2	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	CARBON TETRACHLORIDE CHLOROSENZENE	ug/L	<	5	5
FTA-MO2	19900719	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L ug/L	< <	5 5	5 5
FTA-MO2	19900719	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-MO2 FTA-MO2	19900719 19900719	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	∢	5	5
FTA-MO2	19900719	PURGEABLE COMPO PURGEABLE COMPO	CHLOROFORM CHLOROMETHANE	ug/L	<	5	5
FTA-MO2	19900719	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L ug/L	«	10 5	10 5
FTA-MO2	19900719	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	Ś	5
FTA-MO2 FTA-MO2	19900719 19900719	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	5	5
FTA-HOZ	19900719	PURGEABLE COMPO PURGEABLE COMPO	1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-MO2	19900719	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L ug/L	«	5 5	5 5
FTA-MOZ	19900719	PURGEABLE COMPO	TRANS-1,2-DICHLORGETHENE	ug/L	•	Ś	Ś
FTA-MO2 FTA-MO2	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
FTA-HO2	19900719	PURGEABLE COMPO	CIS-1,3-DICHLOMOPROPENE TRANS-1,3-DICHLOMOPROPENE	ug/L ug/L	< <	5 5	5 5
FTA-HO2	19900719	PURGEABLE COMPO	ETHYLBENZENE	ug/L	₹	5	5
FTA-MO2 FTA-MO2	19900719	PURGEABLE COMPO	METHYL THE CHLORIDE	ug/L	<	10	10
FTA-MOZ	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE	ug/L	<	5	5
FTA-MOZ	19900719	PURGEABLE COMPO	TOLUENE	ug/L ug/L	< <	5 5	5 5
FTA-MOZ	19900719	PURGEABLE COMPO	1,1,1-TRICHLORGETHANE	ug/L	<	5	5
FTA-HOZ FTA-HOZ	19900719 19900719	PURGEABLE COMPO - PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
FTA-HOZ	19900719	PURGEABLE COMPO	TRICHLOROETHENE TRICHLOROFLUOROMETHANE	ug/L ug/L	•	5 10	5 10
FTA-HO2	19900719	PUNGEABLE COMPO	VINYL CHLORIDE	ug/L	٠,	10	10 10
FTA-HO2	19900719	PURGEABLE COMPO	XYLENES	ug/L	•	5	5
FTA-MOP	19900719 1990071 <i>9</i>	SURR COMP SURR COMP		% ug/L		83.6	50
· · · · · · · · · · · · · · · · · · ·	. , , , , , , , , , , , , , , , , , , ,	SURK CUM	TOLUENE-DE-S	% ug/L		107	50

The second secon

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO2	19900719	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		87.8	50
FTA-MO4 FTA-MC4	19900718 19900718	PHYSICAL PHYSICAL	PH CONDUCTIVITY	ph		5 95	0
FTA-MO4	19900718	PHYSICAL	TEMPERATURE	unihos deg C		17.9	0
FTA-MO4	19900718	PP	WITRATES	mg/L		2.33	.2
FTA-MO4 FTA-MO4	19900718 19900718	PP PP	ORTHOPHOSPHATE SULFATE	mg/L mg/L	<	.2 19.5	.2 .5
FTA-HO4	19900718	PP	CHLORIDE	mg/L		8.24	2
FTA-MO4	19900718	PP	TDS	mg/L		128	10
FTA-HO4 FTA-HO4	19900718 19900718	PP ACID EXTRACT	OIL & GREASE PHENOLS	mg/L	<	9.2	5 5
FTA-HO4	19900718	METALS	ANTIMONY	ug/L ug/L	<	30	30
FTA-MO4	19900718	METALS	ARSENIC	ug/L	<	1	1
FTA-MO4 FTA-MO4	19960718 19 9 00718	METALS METALS	PARTUM Beryllium	ug/L	<	55 1	10
FTA-MO4	19900718	METALS	CADHIUN	ug/L ug/L	~	5	5
FTA-MO4	19900718	METALS	CALCIUM	mg/L	•	4.96	.01
FTA-HO4 FTA-HO4	19900718 19900718	METALS METALS	CHROMIUM COPPER	ug/L ug/L	<	26 10	10 10
FTA-HO4	19900718	METALS	IRON	ug/L	`	5240	10
FTA-HQ4	19900718	METALS	LEAD	ug/L	<	20	20
FTA-MO4 FTA-MO4	19900718 19900718	METALS METALS	MAGNES LUM Manganese	ug/L ug/L		4030 192	30 10
FTA-MO4	19900718	METALS	MERCURY	ug/L	<	.2	.2
FTA-HO4	19900718	HETALS	NICKEL	ug/L	<	15	15
FTA-HO4 FTA-HO4	19900718 19900718	METALS METALS	POTASSIUM SELENIUM	æg/L ∪g/L	<	6. <i>7</i> 5	.1
FTA-HO4	19900718	HETALS	SILVER	ug/L	~	10	10
FTA-KO4 FTA-MO4	19900718 19900718	METALS	SILICON	mg/L		4.59	.1
FTA-MO4	19900718	METALS METALS	SODIUM THALLIUM	mg/L ug/L	<	4.39 30	.03 30
FTA-MO4	19900718	METALS	ZINC	ug/L	ζ.	10	10
FTA-H04 FTA-H04	19900718 19900718	PP PP	AMMONTA NITROGEN	mg/L	<	:1	:1
FTA-HO4	19900718	PURGEABLE COMPO PURGEABLE COMPO	ACROLEIN ACRYLONITRILE	ug/L ug/L	«	10 10	10 10
FTA-MO4	19900718	PURGEABLE COMPO	BENZENE	ug/L		.5	5
FTA-M04 FTA-M04	19900718 19900718	PURCEABLE COMPO	BROMODICHLORCHETHANE	ug/L	<	5	5
FTA-MO4	19900718	PURGEABLE COMPC PURGEABLE COMPO	BROMOFORM BROMOMETHANE	ug/L ug/L	< <	5 10	5 10
FTA-MO4	19900718	PURGEABLE COMPO	CARSON TETRACHLORIDE	Ug/L	· (5	5
FTA-MO4 FTA-MO4	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
FTA-MO4	19900718	PURGEABLE COMPO	CHLORODIBROMOMETHANE CHLOROETHANE	ug/L ug/L	< <	5 10	5 10
FTA-MO4	19900708	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-MO4 FTA-MG4	19903718 19900708	PURGEABLE COMPO PURGEABLE COMPO	CHLOROFORM CHLOROMETHANE	ug/L	<	5	5
FTA-HO4	19900718	PURGEABLE COMPO	1,2-01CHLOROBENZENE	ug/L ug/L	«	10 5	10 5
FTA-HO4	19900718	PHRGEABLE COMPO	1,3-DICHLOROGENZENE	ug/L	<	5	5
FTA-MO4 FTA-MO4	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	1,4-DICHLOROSENZENE 1,1-DICHLOROETHANE	ug/L	•	5	5
FTA-HC4	19900718	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L ug/L	< <	5 5	5 5
FTA-HO4	19900718	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	<	5	5
FTA-MO4 FTA-MO4	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE	ug/L	<	5	5
FTA-MO4	19900718	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L ug/L	< <	5 5	5 5
FTA-HO4	19900718	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-MO4 FTA-MO4	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	ETHYLBENZENE METHYLENE CHLORIDE	ug/L	<	5	5
FTA-HO4	19900716	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L ug/L	«	10 5	10 5
FTA-MO4	19900718	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5
FTA-MO4 FTA-MO4	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	TOLUENE 1,1,1-TRICHLORGETHANE	ug/L	< <	5	5
FTA-MO4	19900718	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	∪g/L ug/L	*	5 5	5 5
FTA-MG4	19900718	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
FTA-HO4 FTA-HO4	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	TRICHLOROFLUOROMETHANE VINYL CHLORIDE	ug/L	٠	10	10
FTA-MO4	19900718	PURGEABLE COMPO	XYLENES	ug/L ug/L	«	10 5	10 5
FTA-MO4	19900718	SURR COMP	1,2-DICHLORGETHANE-04-S	X ug/L		86.2	50
FTA-MO4	19900718	SURR COMP	TOLUENE-DB-S	% ug/L		108	50

WELL #	DATE	HEAD ING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO4	19900718	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		87.2	50
FTA-MOS	19900718	PHYSICAL	pH	ph		4.52	0
FTA-MOS	19900718	PHYSICAL	COMPUCTIVITY TEMPERATURE	umhos den C		57 18.9	0 0
FTA-H05 FTA-H05	19900718 19900718	PHYSICAL PP	MITRATES	deg C mg/L		1.42	.2
FTA-MOS	19900718	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-MOS	19900718	PP	SULFATE	mg/L		4.35	.5
FTA-MOS	19900718 19900718	PP PP	CHLORIDE TOS	mg/l mg/l		8.94 80	2 10
FTA-MO5 FTA-MO5	19900718	PP	OIL & GREASE	mg/L		7.2	5
FTA-MOS	19900718	ACID EXTRACT	PHENCLS	ug/L		6.6	5
FTA-MOS	19900718	METALS	ANTIHONY	ug/L	<	30	30
FTA-MO5 FTA-MOS	19900718 19900718	METALS METALS	ARSENIC BARIUN	ug/L ug/L	< <	10	1 10
FTA-MOS	19900718	METALS	BERYLLIUM	ug/L	<	1	1
FTA-MOS	19900718	METALS	CADNIUM	ug/L	<	5	5
FTA-MOS	19900718	METALS	CALCIUM	mg/L		2.68	.01 10
FTA-MO5 FTA-MO5	19900718 19900718	METALS METALS	CHRONIUM COPPER	ug/i. ug/L	«	10	10
FTA-HOS	19900718	METALS	IRON	ug/L		39	10
FTA-MC5	19900718	METALS	LEAG	ug/L	4	20	20
FTA-HOS	19900718	METALS	MAGNESIUM	ug/L	_	1880	30
FTA-H05 FTA-H05	19900718 19900718	HETALS HETALS	MANGAHESE MERCURY	ug/L ug/L	< <	10 .2	10 .2
FTA-MOS	19900718	METALS	NICKEL	ug/L	<	15	15
FTA-HOS	19900718	METALS	POTASSIUM	mg/L		.816	.1
FTA-MOS	19900718	METALS	SELENIUM	ug/L	< <	1 10	1 10
FTA-MO5 FTA-MO5	19900718 19900718	METALS METALS	SILYER SILICON	ug/L mg/L	•	2.07	.1
FTA-HOS	19900718	METALS	SQDTUM	mg/L		5	.03
FTA-MOS	19900718	METALS	THALLIUM	un/L	<	30	30
FTA-HO5 FTA-HO5	19900718 19900718	METALS PP	ZINC AMMONIA WITROGEN	ug/L mg/L	< <	10	10 .1
FTA-MOS	19900718	PURGEABLE COMPO	ACROLETH	ug/L	•	10	10
FTA-MOS	19900718	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-MOS FTA-MOS	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	BENZEME BRONOOTCHLOROMETHANE	ug/L ug/L	«	5 5	5 5
FTA-MOS	19900718	PURGEABLE COMPO	SACHOFORM	ug/L		ś	ś
FTA-MOS	19900718	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
FTA-MOS	19900718	PURGEABLE COMPO	CARBON TETRACHLORIDE CHLOROBENZENE	ug/L	∢	5 5	5 5
FTA-MOS FTA-MOS	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	CHLOROD I BROMONET HANE	ug/L ug/L	•	5	Ś
FTA-HOS	19900718	PURGEABLE COMPO	CHECRGETHANE	ug/L	<	10	10
FTA-MOS	19900718	PURGEABLE COMPO	2-CHLOROETHYLVIWYL STHER	ug/L	<	5	5
FTA-MO5 FTA-MO5	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	CHLOROFORM CHLOROMETHANE	ug/L ug/L	«	5 10	5 10
FTA-MOS	19900718	PURGEABLE COMPO	1,2-DICHLOROSENZENE	ug/L		5	5
FTA-MOS	19900718	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
FTA-HOS	19900718	PHRGEABLE COMPO PURGEABLE COMPO	1,4-DICHLOROSENZENE 1,1-DICHLOROSTHANE	ug/L	< <	5	5 5
F1A-M05 FTA-M05	19900718 19900718	PURGEAULE COMPO	1,2-0 CHI OROETHANE	ug/L ug/L	•	Ś	5
FTA-MOS	19900718	PURGEABLE COMPO	1,1-DICHECROETHENE	ug/L	. <	5	5
FTA-HOS	19900718	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L	<	5	5
FTA-MOS FTA-MOS	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE	ug/L ug/L	«	5 5	5 5
FTA-MOS	19900718	PURGEABLE COMPO	TRANS-1,3-DICHEDROPROPENE	ug/L	<	Ś	5
FTA-HOS	19900718	PURGEABLE COMPG	ETHYLBEHZENE	ug/L	<	5	5
FTA-MOS	19900718	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	٠	10	10
FTA-MOS FTA-MOS	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	1,1,2,2-TETRACKLORGETHANE TETRACKLORGETHENE	ug/L ug/L	< <	5 5	5 5
FTA-HOS	19900718	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
FTA-MOS	19900718	PURGEABLE COMPO	1,1,1-TRICHLORGETHANE	ug/L	<	5	5
FTA-MOS	19900718	PURGEABLE COMPO PURGEABLE COMPO	1,1,2-TRICKLORGETHANE TRICKLORGETHENE	ug/L	«	5 5	5 5
FTA-MOS FTA-MOS	19900718 19900718	PURGEABLE COMPO	TRICHLGROFLLOROMETHANE	ug/L ug/L	•	10	10
FTA-HOS	19900718	PURGEABLE COMPO	VINTE CHEORIDE	ug/L	<	10	10
FTA-HOS	19900718	PURGEABLE COMPO	XYLENES	ug/L	<	5	5
FTA-MOS	19900718	SURR COMP	1,2-D1CHLOROETKANE-D4-S TOLUENE-D8-S	% ug/L % ug/L		88.8 110	50 50
FTA-MOS	19900718	SURR COMP	INCHE-DO-3	~ Ug/ L		, 10	,,,

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
			4-BROMOFLUOROBEHZENE-S	% ug/L		89.2	50
FTA-MOS	19900718	SURR COMP PHYSICAL	4-BRUMUF, OUROBERZEATS PH	ph ph		5.22	ő
FTA-MO6	19700719 19900719	PHYSICAL	CUA DUCT IVITY	umhos		50	0
FTA-MO6 FTA-MO6	19900719	PHYSICAL	TE MPERATURE	deg C		24.9	0
FTA-MO6	19900719	PP	NITRATES	mg/L		2.08	.2
FTA-HOG	19900719	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-MO6	19900719	P P	SULFATE	mg/L		8.13	.5
FTA-HO6	19900719	₽ P	CHLORIDE	mg/L		13.34	2
FTA-MO6	19900719	P P	TDS	mg/L	_	98 5	10 5
FTA-MO6	19900719	PP	OIL & GREASE PHENCLS	mg/L	<	6.9	Ś
FTA-MO6	19900719	ACID EXTRACT METALS	ANTIMONY	ug/L ug/L	<	30	30
FTA-HO6	19900719	METALS	ARSENIC	ug/L	<	1	1
FTA-MO6 FTA-MO6	19900719 19900719	METALS	BARIUM	ug/L	<	10	10
FTA-MOS	19900719	METALS	BERYLLIUM	ug/L	<	;	1
FTA-HOS	19900719	METALS	CADHIUN	ug/L	<	5	5
FTA-MO6	19900719	METALS	CALCIUM	mg/L		4.56	.01
FTA-HO6	19900719	METALS	CHROMEUM	ug/L	<	10	10
FTA-MO6	19900719	METALS	COPPER	ug/L	<	10	10
FTA-MO6	19900719	METALS	IRON	ug/L	< <	10 20	10 20
FTA-MO6	19900719	METALS	CASJ MUISSKRAM	ug/L	•	3590	30
FTA-MO6	19900719	METALS METALS	MANGANESE	ug/L ug/L		228	10
60K-ATT	19900719 19900719	METALS	MERCURY	ug/L	<	.2	.2
FTA-MO6 FTA-MO6	19900719	METALS	NICKEL	ug/L		41	15
FTA-MO6	19900719	METALS	POTASSIUM	mg/L		1.48	.1
FTA-HU6	19900719	METALS	SELENIUM	ug/L	<	1	1
FTA-MO6	19900719	METALS	SILVER	ug/L	<	10	٠٥
FTA-MG6	19900719	METALS	SILICON	mg/L		2.82	.1
FTA-MO6	19900719	HETALS	SODIUM	mg/L		6.35 30	.0 3 30
FTA-MO6	19900719	METALS	THALLIUM Zinc	ug/L	«	10	10
FTA-MO6	19900719	METALS PP	AMMONIA NITROGEN	ug/L mg/L	` `	.1	.1
FTA-HO6	19900719 19900719	PURGEAGLE COMPO	ACROLEIN	ug/L	<	10	10
60M-ATT	19900719	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-MO6	19900719	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
F1A-H06	19900719	PURGEABLE COMPO	BROMOD I CHLOROMETHANE	ug/L	<	5	5
FTA-NO6	19900719	PURGEABLE COMPO	BROMOFORM	ug/L	<	5	5
FTA-HO6	19900719	PURGEABLE COMPO	BRONOMETHANE	ug/L	•	10 5	10 5
FTA-HOS	19900719	PURGEABLE COMPO	CARSON TETRACHLORIDE CHLOROBENZENE	ug/L	< <	5	Ś
FTA-MO6	19900719	PURGEABLE COMPO PURGEABLE COMPO	CHLORODIBROMOMETHANE	ug/L ug/L	` `	ś	Ś
FTA-MO6	19900719 19900719	PURGEABLE COMPO	CHLOROETHANE	ug/L		10	10
FTA-MO6 FTA-MO6	19900719	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-HOG	19900719	PURGEABLE COMPO	CHLORGFORM	ug/L	<	5	5
FTA-#06	19900719	PURGEABLE COMPO	CHLOROMETHANE	ug/L	<	10	
FTA-MO6	19900719	PURCEABLE CUMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
FTA-HOS	19900719	PURGEABLE COMPO	1,3-01CHLOROBENZENS	ug/L	*	5	5 5
FTA-HO6	19900719	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	«	5	
FTA-MO6	19900719	PURGEABLE COMPO PURGEABLE COMPO	1,1-DICHLORGETHANE 1,2-DICHLORGETHANE	ug/L ug/L	~	Ś	-
FTA-MO6 FTA-MO6	19900719 19900719	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	<	Ś	
FTA-MG6	19900719	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L	<	5	5
FTA-MOS	19900719	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	٠:	5	• •
FTA-MO6	19900719	PURGEABLE COMPO	CIS-1,3-DICHLOROPACPEHE	ug/L	<	5	
FTA-HO6	19900719	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	•	5	
FTA-NO6	19900719	PURGEABLE COMPO	ETHYLBENZSNE	ug/L	<		
FTA-NO6	19900719	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	< <	10	
FTA-MO6	19900719	PURGEABLE COMPO PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE	ug/L ug/L		Ś	
FTA-HO6 FTA-HO6	19900719 19900719	PURGEABLE COMPU	TOLUENE	ug/L		5	
FTA-MO6	19900719	PURGEABLE COMPO	1,1.1-TRICHLOROETHANE	ug/L		5.8	5
FTA-H06	19900719	PURGEAGLE COMPO	1,1,2-TRICHLOROETHANE	ug/L		5	5
FTA-HO6	19900719	PURGEABLE COMPO	TRICHLOROETHENE	ug/L		162	
FTA-HO6	19900719	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	Ug/L		10	
57A-H06	19900719	PURGEABLE COMPO	VINYL CHLORIDE	リタノし		10	
FTA-MO6	19900719	PURGEABLE COMPO	XYLENES	ug/l		87.4	
FTA-MO6	19900719	SURR COMP	1,2-01CHLOROETHANE-04-S TCLUENE-08-S	X ug/l X ug/l		110	
FTA-HO6	19900719	SURR COMP	I OLDERE VO-3	~ vg/t		, , ,	

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO6	19900719	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		87	50
FTA-MO7	19900719	PHYSICAL	pit	ph		4.87	ő
FTA-MO7	19900719	PHYSICAL	COMOUCTIVITY	umhos		45	0
FTA-MO7	19900719	PHYSICAL	TEMPERATURE	deg C		19.5	0
FTA-H07 FTA-H07	19900719 19900719	PP	NITRATES	mg/L		1.37	.2
FTA-MO7	19900719	P P P P	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-MO7	19900719	PP	SULFATE Chloride	mg/L		2.8	.5 2
FTA-MO7	19900719	PP	TDS	mg/L mg/L		3.26 94	10
FTA-MO7	19900719	PP	OIL & GREASE	mg/L	<	3	5
FTA-MO7	1990/1719	ACID EXTRACT	PHENOLS	ug/L		37	5
FTA-HO7	19900719	METALS	ANTIHONY	ug/L	<	30	30
FTA-MO7	19900719	METALS	ARSENIC	ug/L	<	1	1
FTA-MO7 FTA-MO7	19900719 19900719	METALS	BARIUM	ug/L		34	10
FTA-HO7	19900719	METALS	SERTLLIUM	ug/L	<	1	1
FTA-MO7	19900719	METALS METALS	CADRIUM	ug/L	<	5	5
FTA-MO7	19900719	METALS	CALCIUM CPROMIUM	#g/L ug/L		2.83 51	.01
FTA-MO7	19900719	METALS	COPPER	ug/L	<	10	10 10
FTA-MO7	19900719	METALS	IRON	ug/L	•	21400	10
FTA-NO7	19900719	METALS	LEAD	ug/L		32	20
FTA-HO7	19900719	METALS	MAGNESIUM	ug/L		2810	30
FTA-HO7	19900719	METALS	MANGAHESE	ug/L		1160	10
FTA-MO7	19900719	METALS	MERCURY	ug/L	<	.2	.2
FTA-MO7 FTA-MO7	19900719 19900719	METALS METALS	HICKEL	ug/L		32	15
FTA-MO7	19900719	METALS	POTASSIUM SELENIUM	mg/L		2	.1
FTA-HO7	19900719	METALS	SILVER	ug/L ug/L	< <	1 10	1 10
FTA-HO7	19900719	METALS	SILICON	mg/L	•	11.2	.1
FTA-MO7	19900719	METALS	SODIUM	mg/L		6.6	.03
FTA-MO7	19900719	METALS	THALLIUM	ug/L	<	30	30
FTA-MO7	19900719	METALS	ZINC	ug/L	<	10	10
FTA-MO7	19900719	PP	AMOREA HETROGEN	mg/L	<	.1	.1
FTA-MO7 FTA-MO7	19900719 19900719	PURCEABLE COMPO PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-HO7	19900719	PURGEABLE COMPO	ACRYLONITRILE BENZENE	ug/L	<	10	10
FTA-MO7	19900719	PURGEABLE COMPO	BRONODICHLOROMETHAN	ug/L ug/L	< <	5 5	5 5
FTA-MO7	19900719	PURGEABLE COMPO	BRONOFORM	ug/L	~	5	5
FTA-MO7	19900719	PURGEABLE COMPO	BRCHOMETHANE	ug/L	<	10	10
FTA-MO7	19900719	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-MO7	19900719	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
FTA-MO7 F(A-MO7	19900719 19900719	PURGEABLE COMPO	CHLCROD I BRONGMETHANE	ug/L	<	5	5
FTA-MO7	19900719	PURGEABLE COMPO PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-MO7	19900719	PURGEABLE COMPO	2-CHLOROETHYLYINYL ETHER CHLOROFORM	ug/L	< <	5 5	5 5
FTA-MO7	19900719	PURGEABLE COMPO	CHLORONETHANE	ug/L ug/L	~	10	10
FTA-MO7	19900719	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	· .	5	5
FTA-MO7	19900719	PURGEABLE COMPO	1,3-DICALOROBENZENE	ug/L	<	5	ś
FTA-MO7	19900719	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	5	5
FTA-HO7	19900719	PURGEABLE COMPO	1,1-DICHLORGETHANE	ug/L	<	5	5
FTA-HO7	19900719 19900719	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-MO7 FTA-MO7	19900719	PURGEABLE COMPO PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L		6.6	5
FTA-MO7	19900719	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE	ug/L	<	5	5
FTA-MO7	19900719	PURGEABLE COMPO	CIS-1,3-DICHEOROPROPENE	ug/L ug/L	«	5 5	5 5
FTA-MO7	19900719	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	è	ś	5
FTA-MO7	19900719	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	Ś	Ś
FTA-MO7	19900719	PURGEABLE COMPO	METHYLEME CHLORIDE	ug/L	<	10	10
FTA-MO7	19900719	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	<	5	5
FTA-HO7 FTA-HO7	19900719	PURGEABLE COMPO	TETRACHLORCETHENE	ug/L	<	5	5
FTA-HO7	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	TOLUENE 1,1,1-TRICHLOROETHANE	ug/L	_	9.7	5
FTA-HO7	19900719	PURGEABLE COMPO	1,1,2-TRICHLORGETHANE	ug/L	٠	5	5
FTA-HO7	19900719	PURGEABLE COMPO	TRICALORGETHENE	ug/L ug/L	«	5 5	5 5
FTA-MO7	19900719	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	``	10	10
FTA-MO7	19900719	PURGEABLE CUMPO	VINTL CHLORIDE	ug/L		10	10
FTA-MO7	19900719	PURGEABLE COMPO	XYI ENES	ug/L	<	5	5
FTA-MO7	19900719	SURR COMP	1,2-DICHLORGETHANE-D4-S	% ug/L		87.4	50
FTA-MO7	19900719	SURR COMP	TOLUENE-08-S	% ug/L		101	50

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO7	19900719	SURR COMP	4-BRUMOFLUOROBENZENE-S	% ug/L		87.8	50
FTA-MO7D	19900719	PP	NITRATES	mg/L		1.03	.2
FTA-MO7D	19900719	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-MO7D	19900719	PP	SULFATE	mg/L		3.08	.5
FTA-HO7D	19900719	PP	CHLORIDE	mg/L		7.42	2
FTA-MO7D	19900719	PP	TDS	mg/L		80	10
FTA-MO7D	19900719	PP	OIL & GREASE	mg/L	<	5	5
FTA-MO7D	19900719	ACID EXTRACT	PHENOLS	ug/L		9	5
FTA-HO7D	19900719	METALS	ANTIMONY	ug/L	<	30 1	30 1
FTA-MO7D	19900719	METALS	ARSENIC	ug/L	< <	10	10
FTA-MO7D	19900719	METALS	BARIUM BERYLLIUM	ug/L	``	10	10
FTA-MO7D	19900719	METALS	CADMIUM	ug/L ug/L	` `	5	Ś
FTA-MO7D	19900719	METALS METALS	CALCIUM	mg/L	•	2.34	.01
FTA-MO7D	19900719 19900719	METALS	CHROMIUM	ug/L	<	10	10
FTA-MO7D FTA-MO7D	19900719	METALS	COPPER	ug/L		10	10
FTA-HO7D	19900719	METALS	IRON	ug/L		499	10
FTA-MO7D	19900719	METALS	LEAD	ug/L	<	20	20
FTA-HO7D	19900719	METALS	MAGNESIUM	ug/L		1770	30
FTA-MO7D	19900719	METALS	MAMGANESE	ug/L		251	10
FTA-MO7D	19900719	METALS	MERCURY	ug/L	<	.2	.2
FTA-HO7D	19900719	METALS	NICKEL	ug/L	<	15	15
FTA-MO7D	19900719	METALS	POTASSIUM	mg/L		.56	.1
FTA-MO7D	19900719	METALS	SELENIUM	ug/L	<	1	. 1
FTA-HO7D	19900719	METALS	SILVER	ug/L	<	10	10
FTA-H070	19900719	METALS	SILICON	mg/L		2.84	.1
FTA-HO7D	19900719	METALS	SODIUM	mg/L		5.81	.03
FTA-MO7D	19900719	METALS	THALLIUM	ug/L	<	30	30
FTA-MO7D	19900719	METALS	ZINC	ug/L	<	10	10
FTA-HO7D	19900719	PP	AMMONIA NITROGEN	mg/L	<	.1 10	.1 10
FTA-H070	19900719	PURGEABLE COMPO	ACROLEIN ACRYLONITRILE	ug/L	«	10	10
FTA-HO7D	19900719	PURGEABLE COMPO	BENZENE	ug/L ug/L	,	5	5
FTA-MO7D	19900719	PURGEABLE COMPO PURGEABLE COMPO	BROMODICHLOROMETHANE	ug/L	` `	5	5
FTA-MO7D	19900719 19900719	PURGEABLE COMPO	BRONGFORM	ug/L	ζ.	ś	Ś
FTA-MO7D FTA-MO7D	19900719	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
FTA-MO7D	19900719	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-MO7D	19900719	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
FTA-MO7D	19900719	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L	<	5	5
FTA-MO7D	19900719	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-MO7D	19900719	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-MO7D	19900719	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5
FTA-HO7D	19900719	PURGEABLE COMPO	CHLOROMETHANE	ug/L	<	10	10
FTA-H07D	19900719	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
FTA-MO7D	19900719	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
FTA-MO7D	19900719	PURGEABLE COMPC	1,4-DICHLOROBENZENE	ug/L	<	5	5
FTA-MO7D	19900719	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	<	5	5
FTA-H07D	19900719	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-MO70	19900719	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	_	6.9	5
FTA-HO7D	19900719	PURGEABLE COMPO	TRANS-1,2-DICHLORCETHENE	ug/L	<	5	5
FTA-HO7D	19900719	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	· ·	5	5
FTA-H07D	19900719	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	«	5 5	5 5
FTA-MO7D	19900719	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	< -	5	5
FTA-MO7D	19900719	PURGEABLE COMPO	STHYLBENZENE	ug/L	«	10	10
FTA-H070	19900719	PURGEABLE COMPO	METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE	ug/L ug/L	` `	5	5
FTA-M070	19900719	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	•	10.2	5
FTA-MO7D	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	TOLUENE	ug/L ug/L	<	5	ś
FTA-MO7D FTA-MO7D	19900719	PURGEABLE COMPO	1,1,1-TRICHLORGETHANE	ug/L	•	43.2	Ś
FTA-HO7D	19900719	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
FTA-MO7D	19900719	PURGEABLE COMPO	TRICHLOROETHENE	ug/L		62.2	5
FTA-HO7D	19900719	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-MO7D	19900719	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
FTA-H07D	19900719	PURGEABLE COMPO	XYLENES	ug/L	∢	5	
FTA-HO7D	19900719	SURR COMP	1,2-DICHLORGETHANE-D4-S	% ug/L		89.8	50
FTA-HO7D	19900719	SURR COMP	TOLUENE-D8-S	% ug/L		104	50
FTA-MO7D	19900719	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		87.2	
FTA-MO8	19900719	PHYSICAL	pH	ph		4.68	
FTA-HO8	19900719	PHYSICAL	CONDUCTIVITY	umhos		71	0

WELL #	DATE	HEAD I NG	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-MO8	19900719	PHYSICAL	TEMPERATURE	deg C		20.5	0
FTA-MO8	19900719	PP	WITRATES	mg/L		1.44	.2
FTA-MO8	19900/19	FP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-MO8	19900719	PP	SULFATE	mg/L		11.7	.5
FTA-MO8	19900719	PP	CHLORIDE	mg/L		11.4	2
FTA-MO8	19900719	PP	TDS	mg/L		88	10
FTA-MO8	19900719	PP	OIL & GREASE	mg/L	<	5	5
FTA-MO8	19900719 19900719	ACID EXTRACT	PHENOLS	ug/L		8.4	5
FTA-HOS	19900719	METALS METALS	ANTIHONY	ug/L	«	30	30
FTA-MOS	19900719	METALS	ARSENIC Barium	ug/L	<	1	1
FTA-HOB	19900719	METALS	BERYLLIUM	ug/L ug/L	<	17 1	10 1
FTA-HO8	19900719	METALS	CADMIUM	ug/L	~	5	5
FTA-HO8	19900719	METALS	CALCIUM	mg/L	-	4.05	.01
FTA-MO8	19900719	METALS	CHROMEUM	ug/L	<	10	10
FTA-MO8	19900719	METALS	COPPER	ug/L	<	10	10
FTA-MO8	19900719	METALS	IRON	ug/L		12700	10
FTA-MO8	19900719	METALS	LEAD	ug/L	<	20	20
FTA-MOS	19900719	METALS	MAGNESIUM	ug/L		3280	30
80M-ATF	19900719	METALS	MANGANESE	ug/L		1360	10
FTA-MOS	19900719 19900719	METALS METALS	MERCURY	ug/L	<	.2	.2
BOH-ATT	19900719	METALS	NICKEL	ug/L	<	15	15
FTA-MO8	19900719	METALS	POTASSIUM SELENIUM	mg/L	<	1.66	.1
FTA-MOB	19900719	METALS	SILVER	ug/L ug/L	~	1 10	1 10
FTA-MOB	19900719	METALS	SILICON	mg/L	`	5.31	.1
80M-ATR	19900719	METALS	SODIUM	mg/L		5.85	.03
FTA-MOB	19900719	METALS	THALLIUM	ug/L	<	30	30
FTA-MOS	19900719	HETALS	ZINC	ug/L	<	10	10
FTA-MO8 FTA-MO8	19900719 19900719	PP PURGEABLE COMPO	AMMONIA NITROGEN	mg/L	< .	.1	.1
FTA-MOS	19900719	PURGEABLE COMPO	ACROLEIN ACRYLOMITRILE	ug/L	<	10	10
FTA-HOB	19900719	PURGEABLE COMPO	BENZENE	ug/L ug/L	«	10 5	10 5
FTA-MO8	19900719	PURGEABLE COMPO	BROMODICHLOROMETHANE	ug/L	<	ś	ź
FTA-MO8	19900719	PURGEABLE COMPO	BRONOFORM	ug/L	<	5	5
FTA-MOS	19900719	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
FTA-MO8 FTA-MO8	19900719 19900719	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-MOB	19900719	PURGEABLE COMPO PURGEABLE COMPO	CHLOROBENZENE	Ug/L	<	5	5
BOM-ATT	19900719	PURGEABLE COMPO	CHLORODIBROMOMETHANE CHLOROETHANE	ug/L	<	5	5
FTA-MOS	19900719	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	< <	10 5	10
FTA-HO8	19900719	PURGEABLE COMPO	CHLOROFURM	ug/L ug/L	~	5	5 5
FTA-MO8	19900719	PURGEABLE COMPO	CHLOROMETHANE	ug/L		10	10
FTA-MO8	19900719	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	₹	5	5
FTA-HOS	19900719	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
FTA-HOS	19900719	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	5	5
FTA-MO8	19900719	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L		7.5	5
FTA-MOR	19900719	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-MO8 FTA-MO8	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	<	5	5
FTA-HOS	19900719	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L	<	5	5
FTA-MOS	19900719	PURGEABLE COMPO	1,2-DICHLOROPROPANE CIS-1,3-DICYLOROPROPENE	ug/L ug/L	«	5 5	5 5
FTA-MO8	19900719	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	~	5	5
FTA-MOS	19900719	PURGEABLE COMPO	ETHYLBENZENE	ug/L	₹	ś	ś
FTA-HO8	19900719	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-MO8	19900719	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	<	5	5
FTA-MO8 FTA-MO8	19900719	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L		6.7	5
FTA-MOS	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
FTA-MOS	19900719	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE	ug/L		30.5	5
FTA-HOB	19900719	PURGEABLE COMPO	TRICHLOROETHANE	ug/L ug/L	<	5 86.8	5
FTA-MO8	19900719	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	5 10
FTA-MO8	19900719	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	~	10	10
FTA-MOS	19900719	PURGEABLE COMPO	XYLENES	ug/L	₹	5	5
FTA-MOB	19900719	SURR COMP	1,2-DICHLOROETHANE-04-S	X ug/L		85.2	50
FTA-MOB	19900719	SURR COMP	TOLUENE-D8-S	X ug/L		105	50
FTA-MOS FTA-MO9	19900719	SURR COMP	4-BROMOFLUOROBENZENE-S	X ug/L		88.8	50
FTA-MO9	19900719 19900719	PHYSICAL	pH	ph		4.99	0
FIA-HUP	17700719	PHYSICAL	CONDUCTIVITY	umhos		210	0

WELL #	DATE	HEADING	PARAMETER	TINU	VALUE	DET	DET LIM
FTA-MO9	19900719	PHYSICAL	TEMPERATURE	deg C		21.7	0
FTA-MO9	19900719	PP	NITRATES	mg/L		1.76	.2
FTA-MU9	19900719	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-H09	19900719	PP	SULFATE	mg/L		7.41	.5
FTA-MO9	19900719	PP	CHLORIDE	mg/L		45.6	2
FTA-MO9	19900719	PP	TDS	mg/L		148	10
FTA-MO9	19900719	PP	OIL & GREASE	mg/L	<	5	5
FTA-H09	19930719	ACID EXTRACT	PHENOLS	ug/L	_	6.6	5 30
FTA-MO9	19900719	METALS	ANTIMONY	ا ر با	«	30 1	1
FTA-MO9	19900719	METALS	ARSENIC Barium	ug/L ug/L	•	153	10
FTA-NO9	19900719	METALS METALS	BERYLLIUM	ug/L	<	1	1
FTA-M09 FTA-M09	19900719 19900719	METALS	CADRIUM	ug/L	<	5	5
FTA-MO9	19900719	METALS	CALCIUA	mg/L		8.02	.01
FTA-MO9	19900719	METALS	CHRONIUM	ug/L	<	10	10
FTA-MO9	19900719	METALS	COPPER	ug/L	<	10	10
FTA-MO9	19900719	METALS	- IRON	ug/L		23300	10
FTA-H09	19900719	METALS	LEAD	ug/L	<	20	20
FTA-MO9	19900719	METALS	MAGNESIUM	ug/L		6410	30
FTA-MO9	19900719	METALS	MANGANESE	ug/L		.722 .2	10 .2
FTA-MO9	19900719	METALS	MERCURY NICKEL	ug/L	<	40	15
FTA-M09	19900719	METALS METALS	POTASSIUM	ug/L mg/L		3.15	.1
FTA-MO9	19900719 19900719	METALS	SELENIUM	ug/L	<	1	i
FTA-H09 FTA-H09	19900719	HETALS	SILVER	ug/L	<	10	10
FTA-MOS	19900719	METALS	SILICON	mg/L		8.62	.1
FTA-MO9	19900719	METALS	SODIUM	mg/L		6.41	.03
FTA-HO9	19900719	METALS	THALLIUM	ug/L	<	30	30
FTA-HO9	19900719	METALS	ZINC	ug/L	<	10	10
FTA-MO9	19900719	PP	AMMONIA NITROGEN	mg/L	<	.1	.1
FTA-HO9	19900719	PURGEABLE COMPO	ACROLEIN	ug/L	«	10 10	10 10
FTA-H09	19900719	PURGEABLE COMPO	ACRYLONITRILE BENZENE	ug/L	«	5	5
FTA-H09	19900719	PURGEABLE COMPO PURGEABLE COMPO	BROMOD I CHLOROMETHANE	ug/L ug/L	~	ś	ś
FTA-MO9	19900719 19900719	PURGEABLE COMPO	BRONOFORM	ug/L	< <	5	5
FTA-MO9 FTA-MO9	19900719	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
FTA-HO9	19900719	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-M09	19900719	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
FTA-MO9	19900719	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L	<	. 5	5
FTA-M09	19900719	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-H09	19900719	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-MO9	19900719	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5 10
FTA-MO9	19900719	PURGEABLE COMPO	CHLOROMETHANE	ug/L	«	10 5	5
FTA-M09	19900719	PURGEABLE COMPO PURGEABLE COMPO	1,2-DICHLOROBENZENE 1.3-DICHLOROBENZENE	ug/L ug/L	` `	5	5
FTA-MO9	19900719 19900719	PURGEABLE COMPO	1,4-01CHLOROBENZENE	ug/L	•	5	Ś
FTA-MO9 FTA-MO9	19900719	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	<	5	5
FTA-MO9	19900719	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-MO9	19900719	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	<	5	5
FTA-MO9	19900719	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/!	<	5	5
FTA-H09	19900719	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
FTA-MO9	19900719	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	•	5	5
FTA-MO9	19900719	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE	ug/L	«	5 5	5 5
FTA-M09	19900719	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L ug/L	~	10	10
FTA-MO9	19900719	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	~	5	,5
FTA-MO9	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	Š
FTA-MO9 FTA-MO9	19900719	PURGEABLE COMPO	TOLUENE	ug/L	<	5	
FTA-MO9	19900719	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	Ug/L	<	5	5 5
FTA-HO9	19900719	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
FTA-MO9	19900719	PURGEABLE COMPO	TRICHLOROETHENE	ug/L		12	. 5
FTA-H09	19900719	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-MO9	19900719	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
FTA-MO9	19900719	PURGEABLE COMPO	XYLENES	ug/L	<	5 00 /	5 50
FTA-MO9	19900719	SURR COMP	1,2-DICHLOROETHANE-D4-S TOLUENE-D8-S	% ug/L % ug/L		90.4 104	50 50
FTA-MO9	19900719	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		87.8	50
FTA-M09	19900719 19900718	SURR COMP PHYSICAL	pH	ph ph		5	Õ
FTA-M10 FTA-M10	19900718	PHYSICAL	CONDUCTIVITY	umhos		45	ō
112 719			-				

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-M10	19900718	PHYSICAL	TEMPERATURE	deg C		20.7	0
FTA-N10	19900718	PP	NITRATES			1.36	.2
FTA-H10		PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
FTA-M10	19900718	PP	SULFATE	mg/L	<	.5	.2 .5
FTA-M10	19900718	PP	CHLORIDE	mg/L		9.2	2
FTA-M10	19900718	PP	TDS	mg/L.		202	10
FTA-M10 FTA-M10	19900718 19900718	pp 4010 SYEDARE	OIL & GREASE	mg/L.	<	5	5
FTA-M10	19900718	ACID EXTRACT HETALS	PHENOLS	ug/L		9.2	5
FTA-M10	19500718	METALS	ANT IMONY ARSENIC	ug/L	<	30	30
FTA-M10	19900718	METALS	BARIUM	ug/L ug/L	«	1 10	1
FTA-M10	19900718	METALS	BERYLLIUM	149/L	~	1	10
FTA-M10	19900718	METALS	CADMIUM	ug/L	· <	Ś	Ś
FTA-M10	19900718	METALS	CALCIUN	Mg/L		2.49	.01
FTA-N10	19900718	METALS	CHROMIUM	ug/L	<	10	10
FTA-M10	19900718	METALS	COPPER	ug/L	<	10	10
FTA-N10	19900718	METALS	IRON	ug/L		23200	10
FTA-M10 FTA-M10	19900718 19900718	METALS	LEAD	ug/L	<	20	20
FTA-M10	19900718	METALS	MAGNESIUM	ug/L		1990	30
FTA-M10	19900718	METALS METALS	MANGANESE	ug/L	_	274	10
FTA-M10	19900718	METALS	MERCURY NICKEL	ug/L	<	.2	.2
FTA-M10	19900718	METALS	POTASSIUM	ug/L mg/L		22 2.06	15 . 1
FTA-K10	19900718	METALS	SELENIUM	ug/L	<	2.03	• ;
FTA-H10	19900718	METALS	SILVER	ug/L	<	10	10
FTA-M10	19900718	METALS	SILICON	mg/L		9.42	.1
FTA-M10	19900718	METALS	SODIUM	mg/L		6.89	.03
FTA-M10 FTA-M10	19900718	METALS	THALLIUM	ug/L	<	30	30
FTA-M10	19900718 19900718	METALS PP	ZINC	ug/L	<	10	10
FTA-M10	19900718	PURGEABLE COMPO	AMICHIA NITROGEN	mg/L	<	.1	.1
FTA-M10	19900718	PURGEABLE COMPO	ACROLEIN ACRYLONITRILE	ug/L ug/L	*	10 10	10
FTA-M10	19900718	PURGEABLE COMPO	BENZENE	ug/L	``	5	10 5
FTA-M10	19900718	PURGEABLE COMPO	BROMODISHLOROMETHANE	ug/L	· <	5	ś
FTA-M10	19900718	PURGEABLE COMPO	BRONGFORM	ug/L	<	5	5
FTA-M10 FTA-M10	19900718	PURGEABLE COMPO	BROMOHETHANE	ug/L	<	10	10
FTA-H10	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-M10	19900718	PURGEABLE COMPO	CHLOROBENZENE CHLOROBIBROMOMETHANE	ug/L	< .	5	5
FTA-M10	19900718	PURGEABLE COMPO	CHLOROETHANE	ug/L ug/L	< <	5 10	5 10
FTA-M10	19900718	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	₹	5	5
FTA-M10	19900718	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	Ś
FTA-M10	19900718	PURGEABLE COMPO	CHLOROMETHANE	ug/L	<	10	10
FTA-M10 FTA-M10	19900718 19900718	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
FTA-HIO	19900718	PURGEABLE COMPO PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
FTA-M10	19900718	PURGEABLE COMPO	1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE	ug/L	<	5	5
FTA-M10	19900718	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug∕L ug/L	< <	5 5	5 5
FTA-M10	19900718	PURGEABLE COMPO	1.1-DICHLOROETHENE	ug/L	₹	ś	5
FTA-M10	19900718	PURGEABLE COMPO	TRANS-1, 2-DICHLOROETHENE	ug/L	~	ś	5
FTA-H10	19900718	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	Ś
FTA-H10	19900718	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-M10	19900718	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-M10 FTA-M10	19900718	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5
FTA-H10	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-H10	19900718	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE	ug/L	<	5	5
FTA-M10	19900718	PURGEABLE COMPO	TOLUERE	ug/L ug/L	«	5 5	5
FTA-H10	19900718	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	~	5	5 5
FTA-H10	19900718	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	`	5	5
FTA-M10	19900718	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	ś
FTA-M10	19900718	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-M10	19900718	PURGEABLE COMPO	AIMAT CHTOLIDE	ug/L	<	10	10
FTA-M10 FTA-M10	19900718 19900718	PURGEABLE COMPO	XYLENES	ug/L	<	5	5
FTA-M10	19900718	SURR COMP SURR COMP	1,2-DICHLORGETHANE-D4-S	% ug/L		88.4	50
FTA-H10	19900718	SURR COMP	TOLUENE-08-S 4-Bronofluorobenzene-s	% ug/L % ug/L		105	50 50
FTA-H11	19900719	PHYSICAL	pH	λ ug/t. ph		91.2 4.87	50 0
FTA-M11	19900719	PHYSICAL	COMPUCTIVITY	umhos		60	ŏ

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-M11	19900719	PHYSICAL	TEMPERATURE	deg C		20	0
FTA-M11	19900719	PP	NITRATES	mg/L		1.06	.2
FTA-H11	19900719	PP	ORTHOPHOSPHATE	mg/L	<	2	.2
FTA-M11	19900719	P P	SULFATE	mg/L		21.8	.5
FTA-H11	19900719	. PP	CHLORIDE	mg/L		3.46	2
FTA-M11	19900719	PP	TDS	mg/L		92	10
FTA-M11	19900719	₽₽	OIL & GREASE	mg/L	<	5	5
FTA-M11	19900719	ACID EXTRACT	PHENOLS	ug/L		8.4	5
FTA-M11	19900719	METALS	YHOHITHA	ug/L	<	30	30 70
FTA-M11	19900719	METALS	ANTIMONY	ug/L	«	30 1	30 1
FTA-H11	19900719	METALS	ARSENIC	ug/L	«	10	10
FTA-H11	19900719	METALS	BARIUM Barium	ug/L ug/L	~	10	10
FTA-M11	19900719	METALS METALS	BERYLLIUM	ug/L	~	1	1
FTA-M11	19900719 19900719	METALS	BERYLLIUM	ug/L	<	1	1
FTA-M11 FTA-M11	19900719	METALS	CADHEUN	ug/L	<	5	5
FTA-H11	19900719	METALS	CADHIUM	ug/L	<	5	5
FTA-M11	19900719	METALS	CALCIUM	mg/L		4.73	.01
FTA-H11	19900719	METALS	CALCIUM	mg/L		4.62	.01
FTA-H11	19900719	METALS	CHROMIUM	ι·g/L	<	10	10
FTA-H11	19900719	METALS	CHROMIUM	ug/L	<	10	10
FTA-M11	19900719	METALS	COPPER	ug/L	<	10	10
FTA-H11	19900719	METALS	COPPER	ug/L	<	10	10
FTA-M11	19900719	METALS	IRON	ug/L		6520	10
FTA-M11	19900719	METALS	IRON	ug/L		6810	10
FTA-M11	19900719	METALS	LEAD	ug/L	<	20	20 20
FTA-H11	19900719	METALS	LEAD	ug/L	<	20 4200	20 30
FTA-H11	19900719	METALS	MAGNESIUM Magnesium	ug/L ug/L		3970	30
FTA-H11	19900719	METALS METALS	MANGANESE	ug/L		507	10
FTA-M11	19900719 19900719	METALS	MANGANESE	ug/L		525	10
FTA-M11 FTA-M11	19900719	METALS	MERCURY	ug/L	<	.2	.2
FTA-H11	19900719	METALS	NICKEL	ug/L	<	15	15
FTA-H11	19900719	METALS	HICKEL	ug/L	<	15	15
FTA-H11	19900719	METALS	POTASSIUM	mg/L		1.56	.1
FTA-H11	19900719	METALS	POTASSIUM	mg/L		1.5	-1
FTA-M11	19900719	METALS	SELENIUM	ug/L	<	1	1
FTA-H11	19900719	METALS	SILVER	ug/L	*	10	10 10
FTA-H11	19900719	METALS	SILVER	ug/L	<	10 4.59	.1
FTA-H11	19900719	METALS	SILICON	mg/L		5.08	.;
FTA-H11	19900719	METALS	SILICON SODIUM	mg/L mg/L		3.31	.03
FTA-H11	19900719	METALS METALS	SOUTH	mg/L		3.11	.03
FTA-M11	19900719 19900719	METALS	THALLIUM	ug/L	<	30	30
FTA-M11 FTA-M11	19900719	METALS	THALLIUM	ug/L	<	30	30
FTA-H11	19900719	METALS	ZINC	ug/L	<	10	10
FTA-H11	19900719	METALS	ZINC	ug/L	<	10	10
FTA-H11	19900719	PP	AMMONIA NITROGEN	mg/L	<	.1	.1
FTA-H11	19900719	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
FTA-H11	19900719	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-H11	19900719	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
FTA-H11	19900719	PURGEABLE COMPO	BROMCDICHLOROMETHANE	ug/L	<	5	5
FTA-H11	19900719	PURGEABLE COMPO	BROMOFORM	ug/L	<	5 10	5 10
FTA-H11	19900719	PURGEABLE COMPO	BROMOMETHANE CARBON TETRACHLORIDE	ug/L ug/L	< <	5	5
FTA-M11	19900719	PURGEABLE COMPO PURGEABLE COMPO	CHLOROBENZENE	ug/L	,	5	5
FTA-M11	19900719 19900719	PURGEABLE COMPO	CHLORODIBROMOMETHANE	ug/L	₹	5	5
FTA-M11 FTA-M11	19900719	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-H11	19900719	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-H11	19900719	PURGEABLE COMPO	CHLCROFORM	ug/L	<	5	5
FTA-H11	19900719	PURGEABLE COMPO	CHLOROMETHANE	ug/L	<	10	10
FTA-M11	19900719	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
FTA-H11	19900719	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
FTA-M11	19900719	PURGEABLE COMPO	1,4-91CHLOROBENZENE	ug/L	<	5	5 5
FTA-H11	19900719	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	<	5	5
FTA-M11	19900719	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-H11	19900719	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	<	5	5
FTA-H11	19900719	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L		5	5 5
FTA-H11	19900717	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	•	5	•

WELL #	DATE	HEAD I NG	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-H11	19900719	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ua/l	<	5	
FTA-H11	19900719	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L ug/L	ζ.	5	5 5
FTA-M11	19900719	PURGEABLE COMPO	ETHYLBENZENE	ug/L	· .	5	5
FTA-H11	19900719	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-M11	19900719	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	<	5	5
FTA-H11	19900719	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5 5
FTA-H11	19900719	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
FTA-M11	19900719	PURGEABLE COMPO	1,1,1-TRICHLORGETHANE	ug/L	<	5	5 5 5
FTA-M11	19900719	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/Ľ	<	5	5
FTA-H11 FTA-H11	19900719 19900719	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
FTA-H11	19900719	PURGEABLE COMPO PURGEABLE COMPO	TRICHLOROFLUORCHETHANE	ug/L	<	10	10
FTA-H11	19900719	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	< -	10	10
FTA-M11	19900719	SURR COMP	XYLENES 1,2-DICHLOROETHANE-D4-S	ug/L % ug/L	<	5 92.6	5 50
FTA-H11	19900719	SURR COMP	TOLUENE-D8-S	¥ ug/L		107	50 50
FTA-M11	19900719	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		91.8	50
FTA-H12	19900719	PHYSICAL	pH	ph		4.91	ő
FTA-M12	19900719	PHYSICAL	CONDUCTIVITY	umhos		30	ŭ
FTA-H12	19900719	PHYSICAL	TEMPERATURE	deg C		19.7	
FTA-M12	19900719	PP	NITRATES	mg/L		.506	.2
FTA-M12	19900719	PP	CRTHOPHOSPHATE	mg/L	<	.2	0 .2 .2
FTA-H12	19900719	PP	SULFATE	mg/L		1.73	.5
FTA-M12	19900719	PP	CHLORIDE	mg/L		6.19	2
FTA-H12	19900719	PP	TDS	mg/L		48	10
FTA-M12	19900719	PP	OIL & GREASE	mg/L	<	5	5
FTA-M12 FTA-M12	19900719 19900719	ACID EXTRACT	PHENOLS	ug/L		8.2	5
FTA-M12	19900719	METALS	ANTIHONY	ug/L	<	30	30
FTA-H12	19900719	METALS METALS	ARSENIC	ug/L	<	1	1
FTA-H12	19900719	METALS	BARIUM Beryllium	ug/L	_	64	10
FTA-H12	19900719	METALS	CADNIUN	ug/L ug/L	<	1 30	1 5
FTA-M12	19900719	METALS	CALCIUM	mg/L		20	.01
FTA-H12	19900719	METALS	CHRONIUM	ug/L		26	10
FTA-M12	19900719	METALS	COPPER	ug/L	<	10	10
FTA-H12	19900719	METALS	IRON	ug/L		68800	10
FTA-H12	19900719	METALS	LEAD	ug/L	<	20	20
FTA-M12 FTA-M12	19900719 19900719	METALS	MAGNESIUM	ug/L		1840	30
FTA-M12	19900719	METALS METALS	MANGANESE	ug/L		1110	10
FTA-M12	19900719	METALS	MERCURY NICKEL	ug/L	<	.2	.2
FTA-H12	19900719	METALS	POTASSIUM	ug/L mg/L		27 2.066	15 . 1
FTA-H12	19900719	METALS	SELENIUM	ug/L	<	2.000	1
FTA-H12	19900719	METALS	SILVER	ug/L	<	10	10
FTA-H12	19900719	HETALS	SILICON	mg/L		11	.1
FTA-M12	19900719	METALS	SODIUM	mg/L		4.01	.03
FTA-M12	19900719	METALS	THALLIUM	ug/L	<	30	30
FTA-M12 FTA-M12	19900719 19900719	METALS	ZINC	ug/L	<	10	10
FTA-M12	19900719	PP PURGEABLE COMPO	AMMONIA NITROGEN	mg/L	<	.1	.1
FTA-M12	19900719	PURGEABLE COMPO	ACROLEIN ACRYLONITRILE	ug/L	< <	10	10
FTA-H12	19900719	PURGEABLE COMPO	BENZENE	ug/L		10	10
FTA-H12	19900719	PURGEABLE COMPO	BROMODICHLOROMETHANE	ug/L ug/L	«	5 5	5 5
FTA-H12	19900719	PURGEABLE COMPO	BRONOFORM	U)/L	<	ś	5
FTA-H12	19900719	PURGEABLE COMPO	BROMOMETHANE	ug/L	•	10	10
FTA-H12	19900719	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
FTA-H12	19900719	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
FTA-H12	19906719	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L	<	5	5
FTA-M12	19900719	PURGEABLE COMPO	CHLOROETHANE	ug/L	<	10	10
FTA-H12 FTA-H12	19900719 19900719	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L	<	5	5
FTA-M12	19900719	PURGEABLE COMPO PURGEABLE COMPO	CHLOROFORM	ug/L	∢ .	5	5
FTA-M12	19900719	PURGEABLE COMPO	CHLOROMETHANE	ug/L	< -	10	10
FTA-H12	19900719	PURGEABLE COMPO	1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE	ug/L	٠	5 5	5
FTA-H12	19900719	PURGEABLE COMPO	1,4-01CHLORGBENZENE	ug/L. ug/L.	< <	5	5
FTA-H12	19900719	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	~	5	5 5
FTA-M12	19900719	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	₹	5	5
FTA-H12	19900719	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	₹	Ś	5
FTA-H12	19900719	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENS	ug/L	<	5	ś
FTA-H12	19900719	PURGEABLE COMPO	1,2-DICKLOROPROPANE	ug/L	<	5	5

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-M12	19900719	PURGEABLE COMPO	CIS-1.3-DICHLOROPROPENE	ug/L	<	5	5
FYA-H12	19900719	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	<	5	5
FTA-M12	19900719	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5
FTA-M12	19900719	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-M12	19900719	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	<	5	5 5
FTA-H12	19900719	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	< <	5 5	5
FTA-M12	19900719	PURGEABLE COMPO PURGEABLE COMPO	TOLUENE 1,1,1-TRICHLOROETHANE	ug/L ug/L	~	5	ś
FTA-M12 FTA-M12	19900719 19 9 00719	PURGEABLE COMPO	1,1,2-TRICHLOROETHANL	ug/L	<	5	5
FTA-M12	19900719	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
FTA-H12	19900719	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
FTA-H12	19900719	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
FTA-M12	19900719	PURGEABLE COMPO	XYLENES	ug/L	<	5 87.8	5 50
FTA-M12	19900719	SURR COMP SURR COMP	1,2-DICHLOROETHANE-D4-S TOLUENE-D8-S	% ug/L % ug/L		106	50
FTA-M12 FTA-M12	19900719 19900719	SURR COMP	4-BROMOFLUOROBENZENE S	% ug/L		90.6	50
FTA-M12D	19900719	PP	NITRATES	mg/L	<	.2	.2
FTA-H12D	19900719	P P	ORTHOPHOSPHATE	mg/L	∢	.2	.2
FTA-M12D	19900719	PP	SULFATE	mg/L	<	.5	.5
FTA-H12D	19900719	PP	CHLORIDE	mg/L	<	2	2
FTA-M12D	19900719	PP	TDS	mg/L	<	62 5	10 5
FTA-M12D	19900719 19900719	PP ACID EXTRACT	OIL & GREASE PHENOLS	mg/L ug/L	`	8.8	5
FTA-M12D FTA-M12D	19900719	METALS	ANTIMONY	ug/L	<	30	30
FTA-H12D	19900719	METALS	ARSENIC	ug/L	<	1	1
FTA-M12D	19900719	METALS	BARIUM	ug/L		119	10
FTA-4120	19900719	HETALS	BERYLLIUM	ug/L	<	1	1
FTA M12D	19900719	METALS	CADRIUM	ug/L		1 09	.01
FTA-M12D	19900719	METALS	CALCIUM CHROMIUM	mg/L ug/L		1.98 62	10
FTA-M12D FTA-M12D	19900719 19900719	METALS METALS	COPPER	ug/L		17	10
FTA-H12D	19900719	METALS	IRON	ug/L		91800	10
FTA-M12D	19900719	METALS	LEAD	ug/L		39	20
FTA-H12D	19900719	METALS	MAGNESIUM	ug/L		2080	30
FTA-H12D	19900719	METALS	MANGANESE	ug/L		1220	10
FTA-H12D	19900719	METALS	MERCURY	ug/L	<	.2 36	.2 15
FTA-H120	19900719	HETALS METALS	NICKEL POTASSIUM	ug/L mg/L		2.14	.1
FTA-M12D FTA-M12D	19900719 19900719	METALS	SELENIUM	ug/L	<	1	1
FTA-M12D	19900719	METALS	SILVER	ug/L	<	10	10
FTA-N12D	19900719	METALS	SILICON	mg/L		_ 12	.1
FTA-M12D	19900719	METALS	MUI OOS	ng/L		3.61	.03
FTA-M12D	19900719	HETALS	THALLIUM	ug/L	 	30	30 10
FTA-H120	19900719	METALS PP	ZINC AMMONIA NITROGEN	ug/L mg/L	` `	10 .1	.1
FTA-M12D FTA-M12D	19900719 19900719	PURGEABLE COMPO	ACROLEIN	ug/L	· .	10	10
FTA-H12D	19900719	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
FTA-M12D	19900719	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
FTA-M12D	19900719	PURGEABLE COMPO	BROHOD I CHLOROMETHANE	ug/L	<	5	5
FTA-H12D	19900719	PURGEABLE COMPO	BRONOFORM	ug/L	< .	5	5
FTA-M12D	19900719	PURGEABLE COMPO	BROMOMETHANE	ug/L ug/L	< <	10 5	10 5
FTA-H12D FTA-H12D	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	CARBON TETRACHLORIDE CHLOROBENZENE	ug/L		ś	ś
FTA-H12D	19900719	PURGEABLE COMPO	CHLORODIBROMOMETHANE	ug/L		5	
FTA-M12D	19900719	PURGEABLE COMPO	CHLOROETHANE	ug/L		10	10
FTA-H120	19900719	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L		5	5
FTA-H12D	19900719	PURGEABLE COMPO	CHLOROFORM	ug/L		5	.5
FTA-M12D	19900719	PURGEABLE COMPO	CHLOROMETYANE	ug/L		10 5	10 5
FTA-M12D	19900719	PURGEABLE COMPO PURGEABLE COMPO	1,2-DICHLOROBENZENE 1.3-DICHLOROBENZENE	ug/L ug/L		5	5
FTA-H12D FTA-H12D	19900719 19900719	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L ug/L		5	5
FTA-H12D	19900719	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L		ś	5
FTA-M12D	19900719	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
FTA-H12D	19900719	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	<	5	5
FTA-M12D	19900719	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L		5	
FTA-M12D	19900719	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L		5 5	5 5
FTA-M12D	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE	ug/L ug/L		5	
FTA-M12D FTA-M12D	19900719	PURGEABLE COMPO	ETHYLBENZENE	ug/L		Š	
A HILD	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, un dendes desire		- 4. -		-	

WELL #	DATE	HEAD ING	PARAMETER	UNIT	VALUE	DET	DET LIM
FTA-M120	19900719	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
FTA-H12D	19900719	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	ζ.	5	5
FTA-M120	19900719	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5
FTA- H120	19900719	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5 5
FTA: M12D FTA-M12D	19900719 19900719	PURGEABLE COMPO PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5
FTA-H120	19900719	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
FTA-M120	19900719	PURGEABLE COMPO	TRICHLOROETHENE TRICHLOROFLUOROMETHANE	ug/L	< <	5	5 10
FTA-H12D	19900719	PURGEABLE COMPO	VINYL CHLORIDE	ug/L ug/L		10 10	10
FTA-H120	19900719	PURGEABLE COMPO	XYLENES	ug/L	<	5	5
FTA-M12D	19900719	SURR COMP	1,2-DICHLOROETHANE-D4-S	% ug/L		89	50
FTA-H12D	19900719	SURR COMP	TOLUENE-D8-S	% ug/L		109	50
FTA-M12D B1040	19900719 19900718	SURR COMP	4-BRONOFLUOROBENZENE-S	% ug/L		87.6	50
B1040	19900718	PHYSICAL PHYSICAL	PH	ph		6.14	0
81040	19900718	PHYSICAL	CONDUCTIVITY TEMPERATURE	umhos deg C		79 17.6	0
B1040	19900718	PP	NITRATES	mg/L	<	.2	0
B1040	19900718	₽₽	ORTHOPHOSPHATE	mg/L	` `	.2	.2 .2
B1040	19900718	PP	SULFATE	mg/L		4.46	.5
81040	19900718	P P	CHLORIDE	ing/L		9.76	2
B1040	19900718	PP	ios	mg/L		74	10
B1040 B1040	19900718 19900718	PP	OIL & GREASE	mg/L	<	5	5
B1040	19900718	ACID EXTRACT METALS	PHENOLS	ug/L		28	5
81040	19900718	METALS	ANTINGHY ARSENIC	ug/L	< -	30	30
81040	19900718	METALS	BARIUM	ug/L ∪g/t	< <	1 10	1 10
B1040	19900718	METALS	BERYLLIUM	Ug/L	``	1	1
B1040	19900718	METALS	Crontum	Jg/L		Ś	5
81040	19900718	METALS	CALL 1UM	ing/L		4.85	.01
81040 81040	19900718	METALS	CHROM/LUM	ug/L	<	10	10
81040	19900718 19900718	METALS	CC>FCR	ug/L		43	10
81040	19900718	METALS METALS	MOK! CASJ	ug/L	_	2700	10
81040	19900718	METALS	MAGNESIUM	ug/L ug/L	<	20 2340	20 30
81040	19900718	METALS	MANGANESE	ug/L		146	10
81040	19900718	METALS	MERCURY	ug/L	<	.2	.2
81040 81040	19900718 19900718	METALS	NICKEL	ug/L	<	15	15
81040	19900718	METALS Metals	POTASSIUM	mg/L	_	3.34	.1
B1040	19900718	METALS	SELENIUM SILVER	ug/ <u>L</u> ug/L	< <	1 10	1 10
B1040	19900718	METALS	SILICON	mg/L	•	1.85	.1
81040	19900718	METALS	SOUTUM	mg/L		5.82	.03
81040	19900718	METALS	THALLIUM	ug/L	<	30	30
81040 81040	19900718 19900718	METALS	ZINC	ug/L	<	10	10
B1040	19900718	PP PURGEABLE COMPO	AMMONIA HITROGEN	mg/L	<	.1	.1
B1040	19900718	PURGEABLE COMPO	ACROLEIN ACRYLONITRILE	ug/L	<	10	10
B1040	19900718	PURGEABLE COMPO	BENZENE	ug/L ug/L	«	10 5	10
B1040	19900718	PURGEABLE COMPO	BROMODICHLOROMETHANE	ug/L	~	5	. 5 5
B1040	19900718	PURGEABLE COMPO	BROMOFORM	Ug/L	∢ '	Š	ź
B1040	19900718	PURGEABLE COMPO	BRONOMETHANE	ug/L	<	10	10
B104(19900718	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
B1040 B1040	19900718 19900718	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5
- : : . :	19900718	PURGEABLE COMPO PURGEABLE COMPO	CHLORODIBROMOMETHANE	ug/L	<	5	5
	19900718	PURGEABLE COMPO	CHLOROETHANE 2-CHLOROETHYLVINYL ETHER	ug/L ug/L	«	10 5	10
	19900718	PURGEABLE COMPO	CHLOROFORM	ug/L	₹	5	5 5
	19900718	PURGEABLE COMPO	CHLOROMETHANE	ug/L	<	10	10
	19900718	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<	5	5
	19900718 19900718	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
	19900718	PURGEABLE COMPO PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	5	5
	19900718	PURGEABLE COMPO	1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	ug/L	*	5	5
	19900718	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L ug/L	₹	5 5	5 5
	19900718	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L	· ·	5	5
	19900718	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	·	ś	ś
	19900718	PURGEABLE COMPO	CIS-1,3-01CHLOROPROPENE	ug/L	<	5	5
	19900718	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L	<	5	5
9 1040	19900718	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
B1040	19900718	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
B1040	19900718	PURGEABLE COMPO	1,1,2,2-TETRACHLGROETHANE	ug/L	<	5	5
B1040	19900718	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	«	5 5	5 5
B1040	19900718	PURGEABLE COMPO PURGEABLE COMPO	TOLUENE 1,1,1-TRICHLOROETHANE	ug/L ug/L	` `	5	5
81040 31040	19900718 19900718	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
81040	19900718	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
B1040	19900718	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
B1040	19900718	PURGEABLE COMPO	VINYL CHLORIDE XYLENES	ug/L	«	10 5	10 5
81040	19900718	PURGEABLE COMPO SURR COMP	1,2-DICHLOROETHANE-D4-S	ug/L % ug/L	•	87.4	50
81040 81040	19900718 19900718	SURR COMP	TOLUENE-D8-S	% ug/L		107	50
81040	19900718	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		89.4	50
B1041	19900718	PHYSICAL	pH	ph		66.6	0
81041	19900718	PHYSICAL	CONDUCTIVITY TEMPERATURE	umhos deg C		89 23.3	ŏ.
81041 81041	19900718 19900718	PHYSICAL PP	NITRATES	mg/L		.679	.2
81041	19900718	PP	ORTHOPHOSPHATE	mg/L	<	.2	.2
B1041	19900718	PP	SULFATE	mg/L	<	.5	.5
81041	19900718	PP	CHLORIDE	mg/L		8.98 68	2 10
81041	19900718	PP PP	TDS OIL & GREASE	mg/L mg/L	<	5	5
B1041 B1041	19900718 19900718	ACID EXTRACT	PHENOLS	u√L		63	5
81041	19900718	METALS	ANT EMONY	ug/L	<	30	30
B1041	19900718	METALS	ARSENIC	ug/L	«	1	1
81041	19900718	METALS	BARIUM BERYLLIUM	ug/L	< <	10	10 1
B1041	19900718	METALS METALS	CADMIUM	ug/L ug/L	` `	Ś	· 5
81041 81041	19900718 19900718	METALS	CALCIUM	mg/L		4.78	.01
B1041	19900718	METALS	CHROMIUM	ug/L	<	10	10
B1041	19900718	METALS	COPPER	ug/L		45	10 10
B1041	19900718	METALS	IRON LEAD	ug/L ug/L		248 57	20
81041 81041	19900718 19900718	HETALS METALS	MAGNESIUM	ug/L		2070	30
81041	19900718	METALS	MANGANESE	ug/L		155	10
B1041	19900718	METALS	MERCURY	ug/L	. <	.2	.2
81041	19900718	METALS	NICKEL	ug/L		19 1.08	15 .1
81041	19900718 19900718	METALS METALS	POTASSIUM SELENIUM	mg/L ug/L	<	1.55	1
81041 81041	19900718	METALS	SILVER	ug/L	<	10	10
B1041	19900718	METALS	SILICON	mg/L		1.79	.1
B1041	19900718	METALS	SODIUM	mg/L		4.92	.03
81041	19900718	METALS	THALLIUM ZINC	ug/L ug/L	«	30 10	30 10
B1041	19900718 19900718	METALS PP	AMMONIA NITROGEN	mg/L		.1	.1
B1041 B1041	19900718	PURGEABLE COMPO	ACROLEIN	ug/L	<	10	10
81041	19900718	PURGEABLE COMPO	ACRYLONITRILE	ug/L	<	10	10
B1041	19900718	PURGEABLE COMPO	BENZENE	ug/L	< <	5 5	5 5
81041	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	BROMODICHLOROMETHANE BROMOFORM	ug/L ug/L	` `	5	ś
81041 81041	19900718	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
B1041	19900718	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L	<	5	5
B1041	19900718	PURGEABLE COMPO	CHLOROBENZENE	ug/L	<	5	5 5
81641	19900718	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L ug/L		5 10	10
B1041	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	CHLOROETHANE 2-CHLOROETHYLVINYL ETHER	ug/L	ζ.	5	5
81041 81041	19900718	PURGEABLE COMPO	CHLOROFORM	ug/L		5	5
51041	19900718	PURGEABLE COMPO	CHLOROMETHANE	ug/L		10	10
81041	19900718	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L		5 5	5 5
81041	19900718	PURGEABLE COMPO	1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	ug/L ug/L		5	5
81041 81041	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L		5	5
81041	19900718	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
B1041	19900718	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L		5	5 5 5
B1041	19900718	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L		5 5	5
B1041	19900718	PURGEABLE COMPO	1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE	ug/L ug/L		5	5
B1041 B1041	19900718 19900718	PURGEABLE COMPO	TRANS-1,3-DICHLOROPROPENE	ug/L		5	5
81041	19900718	PURGEABLE COMPO	ETHYLBENZENE	ug/L		5	

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
B1041	19900718	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
81041	19900718	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	ug/L	<	5	5
B1041	19900718	PURGEABLE COMPO	TETRACHLOROETHENE	ug/L	<	5	5
81041	19900718	PURGEABLE COMPO	TGLUENE	ug/L	<	5	5
B1041	19900718	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5 5
81041	19900718	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	
81041	19900718 19900718	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	. 5
81041 81041	19900718	PURGEABLE COMPO PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
81041	19900718	PURGEABLE COMPO	VINYL CHLORIDE XYLENES	ug/L	٠ <	10	10
B1041	19900718	SURR COMP	1.2-DICHLORGETHANE-D4-S	∪g/L % ug/L	•	5 88.2	5 50
81041	19900718	SURR COMP	TOLUENE-D8-S	% ug/L		103	50
B1041	19900718	SURR COMP	4-BRONOFLUGROBENZENE-S	% ug/L		89.8	50
BLANK 1	19900718	PP	HITRATES	Mg/L	<	.2	.2
BLANK 1	19900718	PP	ORTHOPHOSPHATE	MQ/L	<	.2	.2
BLANK 1	19900713	PP	SULFATE	mg/L	<	.5	.5
BLANK 1	19900718	PP	CHLORIDE	mg/L	<	2	2
BLANK 1	19900718	PP	TOS	mg/L	<	10	10
BLANK 1 BLANK 1	19900718 19900718	PP	OIL & GREASE	mg/L	<	5	5
BLANK 1	19900718	ACID EXTRACT METALS	PHENOLS	Ug/L	<	5	5
BLANK 1	19900718	METALS	ANTIMONY ARSENIC	ug/L	<	30	30
BLANK 1	19900718	METALS	BARIUM	ug/L	«	1 10	1 10
BLANK 1	19900718	METALS	BERYLLIUM	ug/L ug/L	``	10	10
BLANK 1	19900718	METALS	CADMIUM	Ug/L	ζ.	Ś	5
BLANK 1	19900718	METALS	CALCIUM	mg/L	,	.681	.01
BLANK 1	19900718	METALS	CHROMEUM	ug/L	<	10	10
BLANK 1	19900718	METALS	COPPER	ug/L	<	10	10
BLANK 1	19900718	METALS	IRON	ug/L	<	10	10
BLANK 1	19900718	METALS	LEAD	ug/L	<	20	20
BLANK 1	19900718	HETALS	HAGHESIUM	ug/L		62	30
BLANK 1 BLANK 1	19900718 19900718	METALS	MANGANESE	ug/L	<	10	10
BLANK 1	19900718	METALS METALS	MERCURY NICKEL	ug/L	< <	.2	.2
BLANK 1	19900718	METALS	POTASSIUM	ug/L mg/L	•	15 . 1	15 . 1
BLANK 1	19900718	METALS	SELENTUM	ug/L		ij	1
BLANK 1	19900718	METALS	SILVER	Ug/L	<	10	10
BLANK 1	19900718	METALS	SILICON	mg/L		.324	.1
BLANK 1	19900718	METALS	SODIUM	mg/L		1.01	.03
BLANK 1 Blank 1	19900718 19900718	METALS METALS	THALLIUM	Ug/L	< .	30	30
BLANK 1	19900718	PP	ZINC AMMONIA NITROGEN	ug/L	< <	10	10
BLANK 1	19900718	PURGEABLE COMPO	ACROLEIN	mg/L ⊔g/L		.1 10	. 1 10
BLANK 1	19900713	PURGEABLE COMPO	ACRYLONITRILE	ug/L		10	10
BLANK 1	19900718	PURGEABLE COMPO	BENZENE	ug/L	<	5	5
BLAHK 1	19900718	PURGEABLE COMPO	BROMODICHLOROMETHANE	Ug/L	<	5	5
BLANK 1	19900718	PURGEABLE COMPO	BRONGFORM	ug/L	<	5	5
BLANK 1	19900718	PURGEABLE COMPO	BROMOMETHANE	ug/L	<	10	10
BLANK 1 Blank 1	19900718	PURGEABLE COMPO	CARSON TETRACHLORIDE	UQ/L	<	5	5
BLANK 1	19900718 19900718	PURGEABLE COMPO PURGEABLE COMPO	CHLOROGENZENE	ug/L	<	5	5
BLANK 1	19900718	PURGEABLE COMPO	CHLORODIBROMOMETHANE	ug/L	∢ .	- 5	. 5
BLANK 1	19900718	PURGEABLE COMPO	CHLOROETHANE 2-CHLOROETHYLVINYL ETHER	ug/L	«	10	10
BLANK 1	19900718	PURGEABLE COMPO	CHLOROFORM	ug/L ug/L	~	5 5	5 5
BLANK 1	19900718	PURGEABLE COMPO	CHLOROMETHANE	ug/L	``	10	10
BLANK 1	19900718	PURGEABLE COMPO	1,2-DICHLOROBENZENE	ug/L	<u>`</u>	5	5
BLANK 1	19900718	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	Š	5
BLANK 1	19900718	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	5	5
BLANK 1	19900718	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	<	5	5 5
BLANK 1	19900718	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug/L	<	5	5
BLANK 1 Blank 1	19900718 19900718	PURGEABLE COMPO	1,1-01CHLOROETHENE	ug/L	<	5	5
BLANK 1	19900718	PURGEABLE COMPO PURGEA® 5 COMPO	TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE	ug/L	«	5	5
BLANK 1	19900718	PURG JLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L ug/L	«	5 5	5 5
BLANK 1	19900718	PURGEABLE COMPO	TRAHS-1,3-DICHLOROPROPENE	ug/L	~	5	5
BLANK 1	19900718	PURGEABLE COMPO	ETHYLBENZENE	Ug/L	<u>,</u>	ś	Š
BLANK 1	19900718	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	₹	10	10
BLANK 1	19900718	PURGEABLE COMPO	1,1,2,2-TETRACHLOROETHANE	Ug/L	<	5	5
BLAHK 1	19900718	PURGEABLE COMPO	TETRACHLOROETHENE	Ug/L	<	5	5

WELL #	DATE	HEADING	PARAMETER	UNIT	VALUE	DET	DET LIM
BLANK 1	19900718	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
BLANK 1	19900713	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5
BLANK 1	19900718	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
BLANK 1	19900718	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
BLANK 1	19900718	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10 10	10 10
BLANK 1	19900718	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	«	5	5
BLANK 1	19909718	PURGEABLE COMPO	XYLENES	ug/L	`	83.6	50
BLANK 1	19900718	SURR COMP SURR COMP	1,2-DICHLOROETHANE-D4-S TOLUENE-D8-S	% ug/L % ug/L		106	50
BLANK 1 BLANK 1	19900718 19900718	SURR COMP	4-GROMOFLUOROBENZENE-S	% ug/L		105	50
BLANK 2	19900718	pp p	MITRATES	mg/L	<	.2	.2
BLANK 2	19900719	P P	CRTHOPHOSPHATE	mg/L	<	.2	.2
BLANK 2	19900719	PP	SULFATE	mg/L	<	.5	.5
BLANK 2	19900719	₽₽	CHLORIDE	mg/L	<	2	2
BLANK 2	19900719	PP	TDS	mg/L	<	10	10
BLANK 2	19900719	PP	OIL & GREASE	mg/L	<	5	5 5
BLANK 2	19900719	ACID EXTRACT	PHENOLS	ug/L	< <	5 30	30
BLANK 2	19900719	METALS	ANTIMONY ANTIHONY	ug/L ug/L	` `	30	30
BLANK 2	19900719	METALS METALS	ARSENIC	ug/L	` ` `	1	1
BLANK 2	19900719 19900719	METALS	BARIUM	ug/L	<	10	10
BLANK 2	19900719	METALS	BARIUM	ug/L	<	10	10
BLANK 2	19900719	METALS	BERYLLIUM	ug/L	<	1	1
BLANK 2	19900719	HETALS	BERYLLIUM	ug/L	<	1	1
BLANK 2	19900719	NETALS	CADITUM	ug/L	<	5	5
BLANK 2	19900719	METALS	CADHIUM	ug/L	<	5	5
BLANK 2	19900719	METALS	CALCIUM	mg/L		.964	.01
BLANK 2	19900719	METALS	CALCIUM	mg/L		.835	.01
BLANK 2	19900719	METALS	CHRONIUM	ug/L	«	10 10	10 10
BLANK 2	19900719 19900719	METALS	CHRONIUM COPPER	ug/L ug/L	` `	10	10
BLANK 2	19900719	METALS METALS	COPPER	ug/L		10	10
BLANK 2	19900719	METALS	IRON	ug/L	<	10	10
BLANK 2	19900719	METALS	IRON	ug/L	<	10	10
BLANK 2	19900719	METALS	LEAD	ug/L	<	20	20
BLANK 2	19900719	METALS	LEAD	ug/L	<	20	20
BLANK 2	19900719	METALS	MAGHESIUM	ug/L		137	30
BLANK 2	19900719	METALS	MAGNESTUM	Ug/L		83	30
BLANK 2	19900719	HETALS	MANGANESE	ug/L	«	10 10	10 10
BLANK 2	19900719	METALS	MANGAKESE MERCURY	ug/L ug/L	` `	.2	.2
BLANK 2 BLANK 2	19900719 19900719	METALS METALS	NICKEL	ug/L	~	15	15
BLANK 2	19900719	METALS	NICKEL	ug/L	<	15	15
BLANK 2	19900719	METALS	POTASSIUM	mg/L		.351	.1
BLANK 2	19900719	METALS	POTASSIUM	mg/L		.495	.1
BLANK 2	19900719	METALS	SELENIUM	ug/L	<	1	1
BLANK 2	19900719	METALS	SILVER	ug/L	<	10	10
BLANK 2	19900719	METALS	SILVER	ug/L	<	10	10
BLANK 2	19900719	METALS	SILICON	mg/L		.3 .37	.1
BLANK 2	19900719	METALS	SILICON	mg/L		1.13	.03
BLANK 2	19900719	METALS METALS	SOUTH	ng/L ng/L		1.33	.03
BLANK 2 Blank 2	1990071 9 19900719	METALS	THALLIUM	ug/L		72	30
BLANK S	19900719	HETALS	THALLIUM	ug/L		69	30
BLANK 2	19900719	METALS	ZINC	ug/L	<	10	10
BLANK 2	19900719	METALS	ZINC	ug/L	<	10	10
BLANK 2	19900719	P P	AMMONEA HETROGEN	mg/L		.1	.1
BLANK 2	19900719	PURGEABLE COMPO	ACROLEIM	ug/L	<	10	10
BLANK 2	19900719	PURGEABLE COMPO	ACRYLOMITRILE	ug/L		10 5	10 5
BLANK 2	19900719	PURGEABLE COMPO	BENZENE BROMODICHLOROMETHANE	ug/L	«	5	5
BLANK 2	19900719	PURGEABLE COMPO PURGEABLE COMPO	BROMOFORM	ug/L ug/L		5	5
BLANK 2	19900719 19900719	PURGEABLE COMPO	BROMOMETHANE	ug/L		10	10
BLANK 2	19900719	PURGEABLE COMPO	CARBON TETRACHLORIDE	ug/L		5	5
BLAHK 2	19900719	PURGEABLE COMPO	CHLOROBENZENE	ug/L		5	5
BLANK 2	19900719	PURGEABLE COMPO	CHLOROD I BROMOMETHANE	ug/L		5	5
BLANK 2	19900719	PURGEABLE COMPO	CHLOROETHANE	ug/L		10	
BLANK 2	19900719	PURGEABLE COMPO	2-CHLOROETHYLVINYL ETHER	ug/L		5	
BLANK 2	19900719	PURGEABLE COMPO	CHLOROFORM	ug/L	<	5	5

WELL	#	DATE	HEADING	PARAFETER	UNIT	VALUE	DET	DET LIM
	•	40300740						
BLANK		19900719	PURGEABLE COMPO	CHLOROMETHANE	ug/L	<	10	10
BLANK		19900719	PURGEABLE COMPO	1,2-DICHLOROGENZENE	ug/L	<	5	5
BLANK	-	19900719	PURGEABLE COMPO	1,3-DICHLOROBENZENE	ug/L	<	5	5
BLANK		19900719	PURGEABLE COMPO	1,4-DICHLOROBENZENE	ug/L	<	5	5
BLANK		19900719	PURGEABLE COMPO	1,1-DICHLOROETHANE	ug/L	<	5	5
BLANK		19900719	PURGEABLE COMPO	1,2-DICHLOROETHANE	ug,/L	<	5	5
BLANK	2	19900/19	PURGEABLE COMPO	1,1-DICHLOROETHENE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPO	TRANS-1,2-DICHLOROETHENE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPO	1,2-DICHLOROPROPANE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPO	CIS-1,3-DICHLOROPROPENE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPC	TRANS-1,3-DICHLOROPROPENE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPO	ETHYLBENZENE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPO	METHYLENE CHLORIDE	ug/L	<	10	10
BLANK	2	19900719	HERGEABLE COMPO	1,1,2,2-TETRACHLORDETHANE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPC	TETRACHLOROETHENE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPO	TOLUENE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPO	1,1,1-TRICHLOROETHANE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPO	1,1,2-TRICHLOROETHANE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPO	TRICHLOROETHENE	ug/L	<	5	5
BLANK	2	19900719	PURGEABLE COMPO	TRICHLOROFLUOROMETHANE	ug/L	<	10	10
BLANK	2	19900719	PURGEABLE COMPO	VINYL CHLORIDE	ug/L	<	10	10
BLANK		19900719	PURGEABLE COMPO	XYLENES	ug/L	<	5	5
BLANK		19900719	SURR COMP	1,2-DICHLOROETHANE-D4-S	X ug/L	-	83.6	50
BLANK		19900719	SURR COMP	TOLUENE-D8-S	% ug/L		108	50
BLANK		19900719	SURR COMP	4-BROMOFLUOROBENZENE-S	% ug/L		87.6	50.

Waterways Experiment Station Cataloging-in-Publication Data

Aberdeen Area Fire Training Area hydrologic assessment Aberdeen Proving Ground / by Charlie B. Whitten ... [et al.]; prepared for Environmental Management Division, Directorate of Safety, Health and Environment, Aberdeen Proving Ground.

325 p. : ill. ; 28 cm. — (Technical report ; GL-92-20) Includes bibliographical references.

- 1. Water quality management Maryland Aberdeen Proving Ground. 2. Aberdeen Proving Ground (Md.) Water-supply.
- 3. Water, Underground Maryland Aberdeen Proving Ground.
- Water, Underground Maryland Aberdeen Proving Ground.
 Environmental monitoring Maryland Aberdeen Proving Ground.
- I. Whitten, Charlie B. II. Aberdeen Proving Ground (Md.). Office of Environmental Management. III. US Army Engineer Waterways Experiment Station. IV. Series: Technical report (US Army Engineer Waterways Experiment Station); GL-92-20.

TA7 W34 no.GL-92-20